Arie Cattan


2022

pdf bib
F-coref: Fast, Accurate and Easy to Use Coreference Resolution
Shon Otmazgin | Arie Cattan | Yoav Goldberg
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: System Demonstrations

We introduce fastcoref, a python package for fast, accurate, and easy-to-use English coreference resolution. The package is pip-installable, and allows two modes: an accurate mode based on the LingMess architecture, providing state-of-the-art coreference accuracy, and a substantially faster model, F-coref, which is the focus of this work. F-coref allows to process 2.8K OntoNotes documents in 25 seconds on a V100 GPU (compared to 6 minutes for the LingMess model, and to 12 minutes of the popular AllenNLP coreference model) with only a modest drop in accuracy. The fast speed is achieved through a combination of distillation of a compact model from the LingMess model, and an efficient batching implementation using a technique we call leftover batching. https://github.com/shon-otmazgin/fastcoref

2021

pdf bib
iFacetSum: Coreference-based Interactive Faceted Summarization for Multi-Document Exploration
Eran Hirsch | Alon Eirew | Ori Shapira | Avi Caciularu | Arie Cattan | Ori Ernst | Ramakanth Pasunuru | Hadar Ronen | Mohit Bansal | Ido Dagan
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We introduce iFᴀᴄᴇᴛSᴜᴍ, a web application for exploring topical document collections. iFᴀᴄᴇᴛSᴜᴍ integrates interactive summarization together with faceted search, by providing a novel faceted navigation scheme that yields abstractive summaries for the user’s selections. This approach offers both a comprehensive overview as well as particular details regard-ing subtopics of choice. The facets are automatically produced based on cross-document coreference pipelines, rendering generic concepts, entities and statements surfacing in the source texts. We analyze the effectiveness of our application through small-scale user studies that suggest the usefulness of our tool.

pdf bib
Cross-document Coreference Resolution over Predicted Mentions
Arie Cattan | Alon Eirew | Gabriel Stanovsky | Mandar Joshi | Ido Dagan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
CDLM: Cross-Document Language Modeling
Avi Caciularu | Arman Cohan | Iz Beltagy | Matthew Peters | Arie Cattan | Ido Dagan
Findings of the Association for Computational Linguistics: EMNLP 2021

We introduce a new pretraining approach geared for multi-document language modeling, incorporating two key ideas into the masked language modeling self-supervised objective. First, instead of considering documents in isolation, we pretrain over sets of multiple related documents, encouraging the model to learn cross-document relationships. Second, we improve over recent long-range transformers by introducing dynamic global attention that has access to the entire input to predict masked tokens. We release CDLM (Cross-Document Language Model), a new general language model for multi-document setting that can be easily applied to downstream tasks. Our extensive analysis shows that both ideas are essential for the success of CDLM, and work in synergy to set new state-of-the-art results for several multi-text tasks.

pdf bib
CDˆ2CR: Co-reference resolution across documents and domains
James Ravenscroft | Amanda Clare | Arie Cattan | Ido Dagan | Maria Liakata
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Cross-document co-reference resolution (CDCR) is the task of identifying and linking mentions to entities and concepts across many text documents. Current state-of-the-art models for this task assume that all documents are of the same type (e.g. news articles) or fall under the same theme. However, it is also desirable to perform CDCR across different domains (type or theme). A particular use case we focus on in this paper is the resolution of entities mentioned across scientific work and newspaper articles that discuss them. Identifying the same entities and corresponding concepts in both scientific articles and news can help scientists understand how their work is represented in mainstream media. We propose a new task and English language dataset for cross-document cross-domain co-reference resolution (CDˆ2CR). The task aims to identify links between entities across heterogeneous document types. We show that in this cross-domain, cross-document setting, existing CDCR models do not perform well and we provide a baseline model that outperforms current state-of-the-art CDCR models on CDˆ2CR. Our data set, annotation tool and guidelines as well as our model for cross-document cross-domain co-reference are all supplied as open access open source resources.

pdf bib
WEC: Deriving a Large-scale Cross-document Event Coreference dataset from Wikipedia
Alon Eirew | Arie Cattan | Ido Dagan
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Cross-document event coreference resolution is a foundational task for NLP applications involving multi-text processing. However, existing corpora for this task are scarce and relatively small, while annotating only modest-size clusters of documents belonging to the same topic. To complement these resources and enhance future research, we present Wikipedia Event Coreference (WEC), an efficient methodology for gathering a large-scale dataset for cross-document event coreference from Wikipedia, where coreference links are not restricted within predefined topics. We apply this methodology to the English Wikipedia and extract our large-scale WEC-Eng dataset. Notably, our dataset creation method is generic and can be applied with relatively little effort to other Wikipedia languages. To set baseline results, we develop an algorithm that adapts components of state-of-the-art models for within-document coreference resolution to the cross-document setting. Our model is suitably efficient and outperforms previously published state-of-the-art results for the task.

pdf bib
Realistic Evaluation Principles for Cross-document Coreference Resolution
Arie Cattan | Alon Eirew | Gabriel Stanovsky | Mandar Joshi | Ido Dagan
Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics

We point out that common evaluation practices for cross-document coreference resolution have been unrealistically permissive in their assumed settings, yielding inflated results. We propose addressing this issue via two evaluation methodology principles. First, as in other tasks, models should be evaluated on predicted mentions rather than on gold mentions. Doing this raises a subtle issue regarding singleton coreference clusters, which we address by decoupling the evaluation of mention detection from that of coreference linking. Second, we argue that models should not exploit the synthetic topic structure of the standard ECB+ dataset, forcing models to confront the lexical ambiguity challenge, as intended by the dataset creators. We demonstrate empirically the drastic impact of our more realistic evaluation principles on a competitive model, yielding a score which is 33 F1 lower compared to evaluating by prior lenient practices.

2020

pdf bib
CoRefi: A Crowd Sourcing Suite for Coreference Annotation
Ari Bornstein | Arie Cattan | Ido Dagan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Coreference annotation is an important, yet expensive and time consuming, task, which often involved expert annotators trained on complex decision guidelines. To enable cheaper and more efficient annotation, we present CoRefi, a web-based coreference annotation suite, oriented for crowdsourcing. Beyond the core coreference annotation tool, CoRefi provides guided onboarding for the task as well as a novel algorithm for a reviewing phase. CoRefi is open source and directly embeds into any website, including popular crowdsourcing platforms. CoRefi Demo: aka.ms/corefi Video Tour: aka.ms/corefivideo Github Repo: https://github.com/aribornstein/corefi