Ariel Gera


pdf bib
Cluster & Tune: Boost Cold Start Performance in Text Classification
Eyal Shnarch | Ariel Gera | Alon Halfon | Lena Dankin | Leshem Choshen | Ranit Aharonov | Noam Slonim
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In real-world scenarios, a text classification task often begins with a cold start, when labeled data is scarce. In such cases, the common practice of fine-tuning pre-trained models, such as BERT, for a target classification task, is prone to produce poor performance. We suggest a method to boost the performance of such models by adding an intermediate unsupervised classification task, between the pre-training and fine-tuning phases. As such an intermediate task, we perform clustering and train the pre-trained model on predicting the cluster labels.We test this hypothesis on various data sets, and show that this additional classification phase can significantly improve performance, mainly for topical classification tasks, when the number of labeled instances available for fine-tuning is only a couple of dozen to a few hundred.


pdf bib
Active Learning for BERT: An Empirical Study
Liat Ein-Dor | Alon Halfon | Ariel Gera | Eyal Shnarch | Lena Dankin | Leshem Choshen | Marina Danilevsky | Ranit Aharonov | Yoav Katz | Noam Slonim
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Real world scenarios present a challenge for text classification, since labels are usually expensive and the data is often characterized by class imbalance. Active Learning (AL) is a ubiquitous paradigm to cope with data scarcity. Recently, pre-trained NLP models, and BERT in particular, are receiving massive attention due to their outstanding performance in various NLP tasks. However, the use of AL with deep pre-trained models has so far received little consideration. Here, we present a large-scale empirical study on active learning techniques for BERT-based classification, addressing a diverse set of AL strategies and datasets. We focus on practical scenarios of binary text classification, where the annotation budget is very small, and the data is often skewed. Our results demonstrate that AL can boost BERT performance, especially in the most realistic scenario in which the initial set of labeled examples is created using keyword-based queries, resulting in a biased sample of the minority class. We release our research framework, aiming to facilitate future research along the lines explored here.


pdf bib
A Dataset of General-Purpose Rebuttal
Matan Orbach | Yonatan Bilu | Ariel Gera | Yoav Kantor | Lena Dankin | Tamar Lavee | Lili Kotlerman | Shachar Mirkin | Michal Jacovi | Ranit Aharonov | Noam Slonim
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In Natural Language Understanding, the task of response generation is usually focused on responses to short texts, such as tweets or a turn in a dialog. Here we present a novel task of producing a critical response to a long argumentative text, and suggest a method based on general rebuttal arguments to address it. We do this in the context of the recently-suggested task of listening comprehension over argumentative content: given a speech on some specified topic, and a list of relevant arguments, the goal is to determine which of the arguments appear in the speech. The general rebuttals we describe here (in English) overcome the need for topic-specific arguments to be provided, by proving to be applicable for a large set of topics. This allows creating responses beyond the scope of topics for which specific arguments are available. All data collected during this work is freely available for research.

pdf bib
Financial Event Extraction Using Wikipedia-Based Weak Supervision
Liat Ein-Dor | Ariel Gera | Orith Toledo-Ronen | Alon Halfon | Benjamin Sznajder | Lena Dankin | Yonatan Bilu | Yoav Katz | Noam Slonim
Proceedings of the Second Workshop on Economics and Natural Language Processing

Extraction of financial and economic events from text has previously been done mostly using rule-based methods, with more recent works employing machine learning techniques. This work is in line with this latter approach, leveraging relevant Wikipedia sections to extract weak labels for sentences describing economic events. Whereas previous weakly supervised approaches required a knowledge-base of such events, or corresponding financial figures, our approach requires no such additional data, and can be employed to extract economic events related to companies which are not even mentioned in the training data.

pdf bib
Argument Invention from First Principles
Yonatan Bilu | Ariel Gera | Daniel Hershcovich | Benjamin Sznajder | Dan Lahav | Guy Moshkowich | Anael Malet | Assaf Gavron | Noam Slonim
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Competitive debaters often find themselves facing a challenging task – how to debate a topic they know very little about, with only minutes to prepare, and without access to books or the Internet? What they often do is rely on ”first principles”, commonplace arguments which are relevant to many topics, and which they have refined in past debates. In this work we aim to explicitly define a taxonomy of such principled recurring arguments, and, given a controversial topic, to automatically identify which of these arguments are relevant to the topic. As far as we know, this is the first time that this approach to argument invention is formalized and made explicit in the context of NLP. The main goal of this work is to show that it is possible to define such a taxonomy. While the taxonomy suggested here should be thought of as a ”first attempt” it is nonetheless coherent, covers well the relevant topics and coincides with what professional debaters actually argue in their speeches, and facilitates automatic argument invention for new topics.