Arijit Biswas


2024

pdf bib
FANTAstic SEquences and Where to Find Them: Faithful and Efficient API Call Generation through State-tracked Constrained Decoding and Reranking
Zhuoer Wang | Leonardo F. R. Ribeiro | Alexandros Papangelis | Rohan Mukherjee | Tzu-Yen Wang | Xinyan Zhao | Arijit Biswas | James Caverlee | Angeliki Metallinou
Findings of the Association for Computational Linguistics: EMNLP 2024

API call generation is the cornerstone of large language models’ tool-using ability that provides access to the larger world. However, existing supervised and in-context learning approaches suffer from high training costs, poor data efficiency, and generated API calls that can be unfaithful to the API documentation and the user’s request. To address these limitations, we propose an output-side optimization approach called FANTASE. Two of the unique contributions of FANTASE are its State-Tracked Constrained Decoding (SCD) and Reranking components. SCD dynamically incorporates appropriate API constraints in the form of Token Search Trie for efficient and guaranteed generation faithfulness with respect to the API documentation. The Reranking component efficiently brings in the supervised signal by leveraging a lightweight model as the discriminator to rerank the beam-searched candidate generations of the large language model. We demonstrate the superior performance of FANTASE in API call generation accuracy, inference efficiency, and context efficiency with DSTC8 and API Bank datasets.

2023

pdf bib
Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users
Yohan Jo | Xinyan Zhao | Arijit Biswas | Nikoletta Basiou | Vincent Auvray | Nikolaos Malandrakis | Angeliki Metallinou | Alexandros Potamianos
Findings of the Association for Computational Linguistics: EMNLP 2023

While most task-oriented dialogues assume conversations between the agent and one user at a time, dialogue systems are increasingly expected to communicate with multiple users simultaneously who make decisions collaboratively. To facilitate development of such systems, we release the Multi-User MultiWOZ dataset: task-oriented dialogues among two users and one agent. To collect this dataset, each user utterance from MultiWOZ 2.2 was replaced with a small chat between two users that is semantically and pragmatically consistent with the original user utterance, thus resulting in the same dialogue state and system response. These dialogues reflect interesting dynamics of collaborative decision-making in task-oriented scenarios, e.g., social chatter and deliberation. Supported by this data, we propose the novel task of multi-user contextual query rewriting: to rewrite a task-oriented chat between two users as a concise task-oriented query that retains only task-relevant information and that is directly consumable by the dialogue system. We demonstrate that in multi-user dialogues, using predicted rewrites substantially improves dialogue state tracking without modifying existing dialogue systems that are trained for single-user dialogues. Further, this method surpasses training a medium-sized model directly on multi-user dialogues and generalizes to unseen domains.

pdf bib
A Zero-Shot Approach for Multi-User Task-Oriented Dialog Generation
Shiv Surya | Yohan Jo | Arijit Biswas | Alexandros Potamianos
Proceedings of the 16th International Natural Language Generation Conference

Prior art investigating task-oriented dialog and automatic generation of such dialogs have focused on single-user dialogs between a single user and an agent. However, there is limited study on adapting such AI agents to multi-user conversations (involving multiple users and an agent). Multi-user conversations are richer than single-user conversations containing social banter and collaborative decision making. The most significant challenge impeding such studies is the lack of suitable multi-user task-oriented dialogs with annotations of user belief states and system actions. One potential solution is multi-user dialog generation from single-user data. Many single-user dialogs datasets already contain dialog state information (intents, slots), thus making them suitable candidates. In this work, we propose a novel approach for expanding single-user task-oriented dialogs (e.g. MultiWOZ) to multi-user dialogs in a zero-shot setting.

2022

pdf bib
GRAVL-BERT: Graphical Visual-Linguistic Representations for Multimodal Coreference Resolution
Danfeng Guo | Arpit Gupta | Sanchit Agarwal | Jiun-Yu Kao | Shuyang Gao | Arijit Biswas | Chien-Wei Lin | Tagyoung Chung | Mohit Bansal
Proceedings of the 29th International Conference on Computational Linguistics

Learning from multimodal data has become a popular research topic in recent years. Multimodal coreference resolution (MCR) is an important task in this area. MCR involves resolving the references across different modalities, e.g., text and images, which is a crucial capability for building next-generation conversational agents. MCR is challenging as it requires encoding information from different modalities and modeling associations between them. Although significant progress has been made for visual-linguistic tasks such as visual grounding, most of the current works involve single turn utterances and focus on simple coreference resolutions. In this work, we propose an MCR model that resolves coreferences made in multi-turn dialogues with scene images. We present GRAVL-BERT, a unified MCR framework which combines visual relationships between objects, background scenes, dialogue, and metadata by integrating Graph Neural Networks with VL-BERT. We present results on the SIMMC 2.0 multimodal conversational dataset, achieving the rank-1 on the DSTC-10 SIMMC 2.0 MCR challenge with F1 score 0.783. Our code is available at https://github.com/alexa/gravl-bert.

2021

pdf bib
Alexa Conversations: An Extensible Data-driven Approach for Building Task-oriented Dialogue Systems
Anish Acharya | Suranjit Adhikari | Sanchit Agarwal | Vincent Auvray | Nehal Belgamwar | Arijit Biswas | Shubhra Chandra | Tagyoung Chung | Maryam Fazel-Zarandi | Raefer Gabriel | Shuyang Gao | Rahul Goel | Dilek Hakkani-Tur | Jan Jezabek | Abhay Jha | Jiun-Yu Kao | Prakash Krishnan | Peter Ku | Anuj Goyal | Chien-Wei Lin | Qing Liu | Arindam Mandal | Angeliki Metallinou | Vishal Naik | Yi Pan | Shachi Paul | Vittorio Perera | Abhishek Sethi | Minmin Shen | Nikko Strom | Eddie Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

Traditional goal-oriented dialogue systems rely on various components such as natural language understanding, dialogue state tracking, policy learning and response generation. Training each component requires annotations which are hard to obtain for every new domain, limiting scalability of such systems. Similarly, rule-based dialogue systems require extensive writing and maintenance of rules and do not scale either. End-to-End dialogue systems, on the other hand, do not require module-specific annotations but need a large amount of data for training. To overcome these problems, in this demo, we present Alexa Conversations, a new approach for building goal-oriented dialogue systems that is scalable, extensible as well as data efficient. The components of this system are trained in a data-driven manner, but instead of collecting annotated conversations for training, we generate them using a novel dialogue simulator based on a few seed dialogues and specifications of APIs and entities provided by the developer. Our approach provides out-of-the-box support for natural conversational phenomenon like entity sharing across turns or users changing their mind during conversation without requiring developers to provide any such dialogue flows. We exemplify our approach using a simple pizza ordering task and showcase its value in reducing the developer burden for creating a robust experience. Finally, we evaluate our system using a typical movie ticket booking task integrated with live APIs and show that the dialogue simulator is an essential component of the system that leads to over 50% improvement in turn-level action signature prediction accuracy.