Arijit Nag


2024

pdf bib
Cost-Performance Optimization for Processing Low-Resource Language Tasks Using Commercial LLMs
Arijit Nag | Animesh Mukherjee | Niloy Ganguly | Soumen Chakrabarti
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) exhibit impressive zero/few-shot inference and generation quality for high-resource languages (HRLs). A few of them have been trained on low-resource languages (LRLs) and give decent performance. Owing to the prohibitive costs of training LLMs, they are usually used as a network service, with the client charged by the count of input and output tokens. The number of tokens strongly depends on the script and language, as well as the LLM’s subword vocabulary. We show that LRLs are at a pricing disadvantage, because the well-known LLMs produce more tokens for LRLs than HRLs. This is because most currently popular LLMs are optimized for HRL vocabularies. Our objective is to level the playing field: reduce the cost of processing LRLs in contemporary LLMs while ensuring that predictive and generative qualities are not compromised. As means to reduce the number of tokens processed by the LLM, we consider code-mixing, translation, and transliteration of LRLs to HRLs. We perform an extensive study using the IndicXTREME classification and six generative tasks dataset, covering 15 Indic and 3 other languages, while using GPT-4 (one of the costliest LLM services released so far) as a commercial LLM. We observe and analyze interesting patterns involving token count, cost, and quality across a multitude of languages and tasks. We show that choosing the best policy to interact with the LLM can reduce cost by ~90% while giving better or comparable performance, compared to communicating with the LLM in the original LRL.

2023

pdf bib
Entropy-guided Vocabulary Augmentation of Multilingual Language Models for Low-resource Tasks
Arijit Nag | Bidisha Samanta | Animesh Mukherjee | Niloy Ganguly | Soumen Chakrabarti
Findings of the Association for Computational Linguistics: ACL 2023

Multilingual language models (MLLMs) like mBERTpromise to extend the benefits of NLP research to low-resource languages (LRLs). However, LRL words are under-represented in the wordpiece/subword vocabularies of MLLMs. This leads to many LRL words getting replaced by UNK, or concatenated from morphologically unrelated wordpieces, leading to low task accuracy. (Pre)-training MLLMs after including LRL documents is resource-intensive in terms of both human inputs and computational resources. In response, we propose EVALM (entropy-based vocabulary augmented language model), which uses a new task-cognizant measurement to detect the most vulnerable LRL words, whose wordpiece segmentations are undesirable. EVALM then provides reasonable initializations of their embeddings, followed by limited fine-tuning using the small LRL task corpus. Our experiments show significant performance improvements and also some surprising limits to such vocabulary augmentation strategies in various classification tasks for multiple diverse LRLs, as well as code-mixed texts. We will release the code and data to enable further research.

2021

pdf bib
A Data Bootstrapping Recipe for Low-Resource Multilingual Relation Classification
Arijit Nag | Bidisha Samanta | Animesh Mukherjee | Niloy Ganguly | Soumen Chakrabarti
Proceedings of the 25th Conference on Computational Natural Language Learning

Relation classification (sometimes called ‘extraction’) requires trustworthy datasets for fine-tuning large language models, as well as for evaluation. Data collection is challenging for Indian languages, because they are syntactically and morphologically diverse, as well as different from resource-rich languages like English. Despite recent interest in deep generative models for Indian languages, relation classification is still not well-served by public data sets. In response, we present IndoRE, a dataset with 39K entity- and relation-tagged gold sentences in three Indian languages, plus English. We start with a multilingual BERT (mBERT) based system that captures entity span positions and type information and provides competitive monolingual relation classification. Using this system, we explore and compare transfer mechanisms between languages. In particular, we study the accuracy-efficiency tradeoff between expensive gold instances vs. translated and aligned ‘silver’ instances.