The fusion of language models (LMs) and knowledge graphs (KGs) is widely used in commonsense question answering, but generating faithful explanations remains challenging. Current methods often overlook path decoding faithfulness, leading to divergence between graph encoder outputs and model predictions. We identify confounding effects and LM-KG misalignment as key factors causing spurious explanations. To address this, we introduce the LM-KG Fidelity metric to assess KG representation reliability and propose the LM-KG Distribution-aware Alignment (LKDA) algorithm to improve explanation faithfulness. Without ground truth, we evaluate KG explanations using the proposed Fidelity-Sparsity Trade-off Curve. Experiments on CommonsenseQA and OpenBookQA show that LKDA significantly enhances explanation fidelity and model performance, highlighting the need to address distributional misalignment for reliable commonsense reasoning.
Claim verification is an essential step in the automated fact-checking pipeline which assesses the veracity of a claim against a piece of evidence. In this work, we explore the potential of few-shot claim verification, where only very limited data is available for supervision. We propose MAPLE (Micro Analysis of Pairwise Language Evolution), a pioneering approach that explores the alignment between a claim and its evidence with a small seq2seq model and a novel semantic measure. Its innovative utilization of micro language evolution path leverages unlabelled pairwise data to facilitate claim verification while imposing low demand on data annotations and computing resources. MAPLE demonstrates significant performance improvements over SOTA baselines SEED, PET and LLaMA 2 across three fact-checking datasets: FEVER, Climate FEVER, and SciFact. Data and code are available.
To mitigate the impact of the scarcity of labelled data on fact-checking systems, we focus on few-shot claim verification. Despite recent work on few-shot classification by proposing advanced language models, there is a dearth of research in data annotation prioritisation that improves the selection of the few shots to be labelled for optimal model performance. We propose Active PETs, a novel weighted approach that utilises an ensemble of Pattern Exploiting Training (PET) models based on various language models, to actively select unlabelled data as candidates for annotation. Using Active PETs for few-shot data selection shows consistent improvement over the baseline methods, on two technical fact-checking datasets and using six different pretrained language models. We show further improvement with Active PETs-o, which further integrates an oversampling strategy. Our approach enables effective selection of instances to be labelled where unlabelled data is abundant but resources for labelling are limited, leading to consistently improved few-shot claim verification performance. Our code is available.
In this demo, we introduce a web-based misinformation detection system PANACEA on COVID-19 related claims, which has two modules, fact-checking and rumour detection. Our fact-checking module, which is supported by novel natural language inference methods with a self-attention network, outperforms state-of-the-art approaches. It is also able to give automated veracity assessment and ranked supporting evidence with the stance towards the claim to be checked. In addition, PANACEA adapts the bi-directional graph convolutional networks model, which is able to detect rumours based on comment networks of related tweets, instead of relying on the knowledge base. This rumour detection module assists by warning the users in the early stages when a knowledge base may not be available.
We present a comprehensive work on automated veracity assessment from dataset creation to developing novel methods based on Natural Language Inference (NLI), focusing on misinformation related to the COVID-19 pandemic. We first describe the construction of the novel PANACEA dataset consisting of heterogeneous claims on COVID-19 and their respective information sources. The dataset construction includes work on retrieval techniques and similarity measurements to ensure a unique set of claims. We then propose novel techniques for automated veracity assessment based on Natural Language Inference including graph convolutional networks and attention based approaches. We have carried out experiments on evidence retrieval and veracity assessment on the dataset using the proposed techniques and found them competitive with SOTA methods, and provided a detailed discussion.
This paper describes the participation of the team “dina” in the Multilingual News Similarity task at SemEval 2022. To build our system for the task, we experimented with several multilingual language models which were originally pre-trained for semantic similarity but were not further fine-tuned. We use these models in combination with state-of-the-art packages for machine translation and named entity recognition with the expectation of providing valuable input to the model. Our work assesses the applicability of such “pure” models to solve the multilingual semantic similarity task in the case of news articles. Our best model achieved a score of 0.511, but shows that there is room for improvement.
This paper presents the second place system for the R2VQ: competence-based multimodal question answering shared task. The purpose of this task is to involve semantic&cooking roles and text-images objects when querying how well a system understands the procedure of a recipe. This task is approached with text-to-text generative model based on transformer architecture. As a result, the model can well generalise to soft constrained and other competence-based question answering problem. We propose label enclosed input method which help the model achieve significant improvement from 65.34 (baseline) to 91.3. In addition to describing the submitted system, the impact of model architecture and label selection are investigated along with remarks regarding error analysis. Finally, future works are presented.
Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for social media on which information is shared in a multitude of ways, including diverse languages and code-switching. Since the seminal work of Han and Baldwin (2011) a decade ago, lexical normalization has attracted attention in English and multiple other languages. However, there exists a lack of a common benchmark for comparison of systems across languages with a homogeneous data and evaluation setup. The MultiLexNorm shared task sets out to fill this gap. We provide the largest publicly available multilingual lexical normalization benchmark including 13 language variants. We propose a homogenized evaluation setup with both intrinsic and extrinsic evaluation. As extrinsic evaluation, we use dependency parsing and part-of-speech tagging with adapted evaluation metrics (a-LAS, a-UAS, and a-POS) to account for alignment discrepancies. The shared task hosted at W-NUT 2021 attracted 9 participants and 18 submissions. The results show that neural normalization systems outperform the previous state-of-the-art system by a large margin. Downstream parsing and part-of-speech tagging performance is positively affected but to varying degrees, with improvements of up to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS for the winning system.
Scientific claim verification is a unique challenge that is attracting increasing interest. The SCIVER shared task offers a benchmark scenario to test and compare claim verification approaches by participating teams and consists in three steps: relevant abstract selection, rationale selection and label prediction. In this paper, we present team QMUL-SDS’s participation in the shared task. We propose an approach that performs scientific claim verification by doing binary classifications step-by-step. We trained a BioBERT-large classifier to select abstracts based on pairwise relevance assessments for each <claim, title of the abstract> and continued to train it to select rationales out of each retrieved abstract based on <claim, sentence>. We then propose a two-step setting for label prediction, i.e. first predicting “NOT_ENOUGH_INFO” or “ENOUGH_INFO”, then label those marked as “ENOUGH_INFO” as either “SUPPORT” or “CONTRADICT”. Compared to the baseline system, we achieve substantial improvements on the dev set. As a result, our team is the No. 4 team on the leaderboard.
Detecting and grounding false and misleading claims on the web has grown to form a substantial sub-field of NLP. The sub-field addresses problems at multiple different levels of misinformation detection: identifying check-worthy claims; tracking claims and rumors; rumor collection and annotation; grounding claims against knowledge bases; using stance to verify claims; and applying style analysis to detect deception. This half-day tutorial presents the theory behind each of these steps as well as the state-of-the-art solutions.
This paper describes our contribution to SemEval 2020 Task 8: Memotion Analysis. Our system learns multi-modal embeddings from text and images in order to classify Internet memes by sentiment. Our model learns text embeddings using BERT and extracts features from images with DenseNet, subsequently combining both features through concatenation. We also compare our results with those produced by DenseNet, ResNet, BERT, and BERT-ResNet. Our results show that image classification models have the potential to help classifying memes, with DenseNet outperforming ResNet. Adding text features is however not always helpful for Memotion Analysis.
Since the first RumourEval shared task in 2017, interest in automated claim validation has greatly increased, as the danger of “fake news” has become a mainstream concern. However automated support for rumour verification remains in its infancy. It is therefore important that a shared task in this area continues to provide a focus for effort, which is likely to increase. Rumour verification is characterised by the need to consider evolving conversations and news updates to reach a verdict on a rumour’s veracity. As in RumourEval 2017 we provided a dataset of dubious posts and ensuing conversations in social media, annotated both for stance and veracity. The social media rumours stem from a variety of breaking news stories and the dataset is expanded to include Reddit as well as new Twitter posts. There were two concrete tasks; rumour stance prediction and rumour verification, which we present in detail along with results achieved by participants. We received 22 system submissions (a 70% increase from RumourEval 2017) many of which used state-of-the-art methodology to tackle the challenges involved.
Automatic resolution of rumours is a challenging task that can be broken down into smaller components that make up a pipeline, including rumour detection, rumour tracking and stance classification, leading to the final outcome of determining the veracity of a rumour. In previous work, these steps in the process of rumour verification have been developed as separate components where the output of one feeds into the next. We propose a multi-task learning approach that allows joint training of the main and auxiliary tasks, improving the performance of rumour verification. We examine the connection between the dataset properties and the outcomes of the multi-task learning models used.
Media is full of false claims. Even Oxford Dictionaries named “post-truth” as the word of 2016. This makes it more important than ever to build systems that can identify the veracity of a story, and the nature of the discourse around it. RumourEval is a SemEval shared task that aims to identify and handle rumours and reactions to them, in text. We present an annotation scheme, a large dataset covering multiple topics – each having their own families of claims and replies – and use these to pose two concrete challenges as well as the results achieved by participants on these challenges.
We present a system for time sensitive, topic based summarisation of the sentiment around target entities and topics in collections of tweets. We describe the main elements of the system and illustrate its functionality with two examples of sentiment analysis of topics related to the 2017 UK general election.
Existing target-specific sentiment recognition methods consider only a single target per tweet, and have been shown to miss nearly half of the actual targets mentioned. We present a corpus of UK election tweets, with an average of 3.09 entities per tweet and more than one type of sentiment in half of the tweets. This requires a method for multi-target specific sentiment recognition, which we develop by using the context around a target as well as syntactic dependencies involving the target. We present results of our method on both a benchmark corpus of single targets and the multi-target election corpus, showing state-of-the art performance in both corpora and outperforming previous approaches to multi-target sentiment task as well as deep learning models for single-target sentiment.
We introduce TweetMT, a parallel corpus of tweets in four language pairs that combine five languages (Spanish from/to Basque, Catalan, Galician and Portuguese), all of which have an official status in the Iberian Peninsula. The corpus has been created by combining automatic collection and crowdsourcing approaches, and it is publicly available. It is intended for the development and testing of microtext machine translation systems. In this paper we describe the methodology followed to build the corpus, and present the results of the shared task in which it was tested.
Rumour stance classification, the task that determines if each tweet in a collection discussing a rumour is supporting, denying, questioning or simply commenting on the rumour, has been attracting substantial interest. Here we introduce a novel approach that makes use of the sequence of transitions observed in tree-structured conversation threads in Twitter. The conversation threads are formed by harvesting users’ replies to one another, which results in a nested tree-like structure. Previous work addressing the stance classification task has treated each tweet as a separate unit. Here we analyse tweets by virtue of their position in a sequence and test two sequential classifiers, Linear-Chain CRF and Tree CRF, each of which makes different assumptions about the conversational structure. We experiment with eight Twitter datasets, collected during breaking news, and show that exploiting the sequential structure of Twitter conversations achieves significant improvements over the non-sequential methods. Our work is the first to model Twitter conversations as a tree structure in this manner, introducing a novel way of tackling NLP tasks on Twitter conversations.
In this paper we introduce TweetNorm_es, an annotated corpus of tweets in Spanish language, which we make publicly available under the terms of the CC-BY license. This corpus is intended for development and testing of microtext normalization systems. It was created for Tweet-Norm, a tweet normalization workshop and shared task, and is the result of a joint annotation effort from different research groups. In this paper we describe the methodology defined to build the corpus as well as the guidelines followed in the annotation process. We also present a brief overview of the Tweet-Norm shared task, as the first evaluation environment where the corpus was used.