Artur Guimarães
2024
Lisbon Computational Linguists at SemEval-2024 Task 2: Using a Mistral-7B Model and Data Augmentation
Artur Guimarães
|
Bruno Martins
|
João Magalhães
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
ABSTRACT: This paper describes our approach to the SemEval-2024 safe biomedical Natural Language Inference for Clinical Trials (NLI4CT) task, which concerns classifying statements about Clinical Trial Reports (CTRs). We explored the capabilities of Mistral-7B, a generalistic open-source Large Language Model (LLM). We developed a prompt for the NLI4CT task, and fine-tuning a quantized version of the model using a slightly augmented version of the training dataset. The experimental results show that this approach can produce notable results in terms of the macro F1-score, while having limitations in terms of faithfulness and consistency. All the developed code is publicly available on a GitHub repository.
Search