Arun Babu


2023

pdf bib
Toward Joint Language Modeling for Speech Units and Text
Ju-Chieh Chou | Chung-Ming Chien | Wei-Ning Hsu | Karen Livescu | Arun Babu | Alexis Conneau | Alexei Baevski | Michael Auli
Findings of the Association for Computational Linguistics: EMNLP 2023

Speech and text are two major forms of human language. The research community has been focusing on mapping speech to text or vice versa for many years. However, in the field of language modeling, very little effort has been made to model them jointly. In light of this, we explore joint language modeling for speech units and text. Specifically, we compare different speech tokenizers to transform continuous speech signals into discrete units and use different methods to construct mixed speech-text data. We introduce automatic metrics to evaluate how well the joint LM mixes speech and text. We also fine-tune the LM on downstream spoken language understanding (SLU) tasks with different modalities (speech or text) and test its performance to assess the model’s learning of shared representations. Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks and shows zero-shot cross-modal transferability.

2021

pdf bib
Non-Autoregressive Semantic Parsing for Compositional Task-Oriented Dialog
Arun Babu | Akshat Shrivastava | Armen Aghajanyan | Ahmed Aly | Angela Fan | Marjan Ghazvininejad
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Semantic parsing using sequence-to-sequence models allows parsing of deeper representations compared to traditional word tagging based models. In spite of these advantages, widespread adoption of these models for real-time conversational use cases has been stymied by higher compute requirements and thus higher latency. In this work, we propose a non-autoregressive approach to predict semantic parse trees with an efficient seq2seq model architecture. By combining non-autoregressive prediction with convolutional neural networks, we achieve significant latency gains and parameter size reduction compared to traditional RNN models. Our novel architecture achieves up to an 81% reduction in latency on TOP dataset and retains competitive performance to non-pretrained models on three different semantic parsing datasets.

pdf bib
Span Pointer Networks for Non-Autoregressive Task-Oriented Semantic Parsing
Akshat Shrivastava | Pierce Chuang | Arun Babu | Shrey Desai | Abhinav Arora | Alexander Zotov | Ahmed Aly
Findings of the Association for Computational Linguistics: EMNLP 2021

An effective recipe for building seq2seq, non-autoregressive, task-oriented parsers to map utterances to semantic frames proceeds in three steps: encoding an utterance x, predicting a frame’s length |y|, and decoding a |y|-sized frame with utterance and ontology tokens. Though empirically strong, these models are typically bottlenecked by length prediction, as even small inaccuracies change the syntactic and semantic characteristics of resulting frames. In our work, we propose span pointer networks, non-autoregressive parsers which shift the decoding task from text generation to span prediction; that is, when imputing utterance spans into frame slots, our model produces endpoints (e.g., [i, j]) as opposed to text (e.g., “6pm”). This natural quantization of the output space reduces the variability of gold frames, therefore improving length prediction and, ultimately, exact match. Furthermore, length prediction is now responsible for frame syntax and the decoder is responsible for frame semantics, resulting in a coarse-to-fine model. We evaluate our approach on several task-oriented semantic parsing datasets. Notably, we bridge the quality gap between non-autogressive and autoregressive parsers, achieving 87 EM on TOPv2 (Chen et al. 2020). Furthermore, due to our more consistent gold frames, we show strong improvements in model generalization in both cross-domain and cross-lingual transfer in low-resource settings. Finally, due to our diminished output vocabulary, we observe 70% reduction in latency and 83% reduction in memory at beam size 5 compared to prior non-autoregressive parsers.