2018
pdf
bib
abs
DR-BiLSTM: Dependent Reading Bidirectional LSTM for Natural Language Inference
Reza Ghaeini
|
Sadid A. Hasan
|
Vivek Datla
|
Joey Liu
|
Kathy Lee
|
Ashequl Qadir
|
Yuan Ling
|
Aaditya Prakash
|
Xiaoli Fern
|
Oladimeji Farri
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
We present a novel deep learning architecture to address the natural language inference (NLI) task. Existing approaches mostly rely on simple reading mechanisms for independent encoding of the premise and hypothesis. Instead, we propose a novel dependent reading bidirectional LSTM network (DR-BiLSTM) to efficiently model the relationship between a premise and a hypothesis during encoding and inference. We also introduce a sophisticated ensemble strategy to combine our proposed models, which noticeably improves final predictions. Finally, we demonstrate how the results can be improved further with an additional preprocessing step. Our evaluation shows that DR-BiLSTM obtains the best single model and ensemble model results achieving the new state-of-the-art scores on the Stanford NLI dataset.
2017
pdf
bib
abs
Learning to Diagnose: Assimilating Clinical Narratives using Deep Reinforcement Learning
Yuan Ling
|
Sadid A. Hasan
|
Vivek Datla
|
Ashequl Qadir
|
Kathy Lee
|
Joey Liu
|
Oladimeji Farri
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Clinical diagnosis is a critical and non-trivial aspect of patient care which often requires significant medical research and investigation based on an underlying clinical scenario. This paper proposes a novel approach by formulating clinical diagnosis as a reinforcement learning problem. During training, the reinforcement learning agent mimics the clinician’s cognitive process and learns the optimal policy to obtain the most appropriate diagnoses for a clinical narrative. This is achieved through an iterative search for candidate diagnoses from external knowledge sources via a sentence-by-sentence analysis of the inherent clinical context. A deep Q-network architecture is trained to optimize a reward function that measures the accuracy of the candidate diagnoses. Experiments on the TREC CDS datasets demonstrate the effectiveness of our system over various non-reinforcement learning-based systems.
2016
pdf
bib
abs
Neural Clinical Paraphrase Generation with Attention
Sadid A. Hasan
|
Bo Liu
|
Joey Liu
|
Ashequl Qadir
|
Kathy Lee
|
Vivek Datla
|
Aaditya Prakash
|
Oladimeji Farri
Proceedings of the Clinical Natural Language Processing Workshop (ClinicalNLP)
Paraphrase generation is important in various applications such as search, summarization, and question answering due to its ability to generate textual alternatives while keeping the overall meaning intact. Clinical paraphrase generation is especially vital in building patient-centric clinical decision support (CDS) applications where users are able to understand complex clinical jargons via easily comprehensible alternative paraphrases. This paper presents Neural Clinical Paraphrase Generation (NCPG), a novel approach that casts the task as a monolingual neural machine translation (NMT) problem. We propose an end-to-end neural network built on an attention-based bidirectional Recurrent Neural Network (RNN) architecture with an encoder-decoder framework to perform the task. Conventional bilingual NMT models mostly rely on word-level modeling and are often limited by out-of-vocabulary (OOV) issues. In contrast, we represent the source and target paraphrase pairs as character sequences to address this limitation. To the best of our knowledge, this is the first work that uses attention-based RNNs for clinical paraphrase generation and also proposes an end-to-end character-level modeling for this task. Extensive experiments on a large curated clinical paraphrase corpus show that the attention-based NCPG models achieve improvements of up to 5.2 BLEU points and 0.5 METEOR points over a non-attention based strong baseline for word-level modeling, whereas further gains of up to 6.1 BLEU points and 1.3 METEOR points are obtained by the character-level NCPG models over their word-level counterparts. Overall, our models demonstrate comparable performance relative to the state-of-the-art phrase-based non-neural models.
pdf
bib
Automatically Inferring Implicit Properties in Similes
Ashequl Qadir
|
Ellen Riloff
|
Marilyn A. Walker
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
pdf
bib
Activity Modeling in Email
Ashequl Qadir
|
Michael Gamon
|
Patrick Pantel
|
Ahmed Hassan Awadallah
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
pdf
bib
abs
Neural Paraphrase Generation with Stacked Residual LSTM Networks
Aaditya Prakash
|
Sadid A. Hasan
|
Kathy Lee
|
Vivek Datla
|
Ashequl Qadir
|
Joey Liu
|
Oladimeji Farri
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
In this paper, we propose a novel neural approach for paraphrase generation. Conventional paraphrase generation methods either leverage hand-written rules and thesauri-based alignments, or use statistical machine learning principles. To the best of our knowledge, this work is the first to explore deep learning models for paraphrase generation. Our primary contribution is a stacked residual LSTM network, where we add residual connections between LSTM layers. This allows for efficient training of deep LSTMs. We evaluate our model and other state-of-the-art deep learning models on three different datasets: PPDB, WikiAnswers, and MSCOCO. Evaluation results demonstrate that our model outperforms sequence to sequence, attention-based, and bi-directional LSTM models on BLEU, METEOR, TER, and an embedding-based sentence similarity metric.
2015
pdf
bib
Learning to Recognize Affective Polarity in Similes
Ashequl Qadir
|
Ellen Riloff
|
Marilyn Walker
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
2014
pdf
bib
Learning Emotion Indicators from Tweets: Hashtags, Hashtag Patterns, and Phrases
Ashequl Qadir
|
Ellen Riloff
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
2013
pdf
bib
Sarcasm as Contrast between a Positive Sentiment and Negative Situation
Ellen Riloff
|
Ashequl Qadir
|
Prafulla Surve
|
Lalindra De Silva
|
Nathan Gilbert
|
Ruihong Huang
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing
pdf
bib
Bootstrapped Learning of Emotion Hashtags #hashtags4you
Ashequl Qadir
|
Ellen Riloff
Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
2012
pdf
bib
Ensemble-based Semantic Lexicon Induction for Semantic Tagging
Ashequl Qadir
|
Ellen Riloff
*SEM 2012: The First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012)
2011
pdf
bib
Classifying Sentences as Speech Acts in Message Board Posts
Ashequl Qadir
|
Ellen Riloff
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing
2009
pdf
bib
Detecting Opinion Sentences Specific to Product Features in Customer Reviews using Typed Dependency Relations
Ashequl Qadir
Proceedings of the Workshop on Events in Emerging Text Types