Ashutosh Bajpai
2024
Temporally Consistent Factuality Probing for Large Language Models
Ashutosh Bajpai
|
Aaryan Goyal
|
Atif Anwer
|
Tanmoy Chakraborty
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The prolific use of Large Language Models (LLMs) as an alternate knowledge base requires them to be factually consistent, necessitating both correctness and consistency traits for paraphrased queries. Recently, significant attempts have been made to benchmark datasets and metrics to evaluate LLMs for these traits. However, structural simplicity (subject-relation-object) and contemporary association in their query formulation limit the broader definition of factuality and consistency. In this study, we introduce TeCFaP, a novel Temporally Consistent Factuality Probe task to expand the consistent factuality probe in the temporal dimension. To this end, we propose TEMP-COFAC, a high-quality dataset of prefix-style English query paraphrases. Subsequently, we extend the definitions of existing metrics to represent consistent factuality across temporal dimension. We experiment with a diverse set of LLMs and find most of them performing poorly on TeCFaP. Next, we propose a novel solution CoTSeLF (Consistent-Time-Sensitive Learning Framework) combining multi-task instruction tuning (MT-IT) with consistent-time-sensitive reinforcement learning (CTSRL) to improve temporally consistent factuality in LLMs. Our experiments demonstrate the efficacy of CoTSeLF over several baselines.
Search