Ashwin Kalyan


2024

pdf bib
QualEval: Qualitative Evaluation for Model Improvement
Vishvak Murahari | Ameet Deshpande | Peter Clark | Tanmay Rajpurohit | Ashish Sabharwal | Karthik Narasimhan | Ashwin Kalyan
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Quantitative evaluation metrics have been pivotal in gauging the advancements of AI systems like large language models (LLMs).However, due to the intricate nature of real-world tasks, a single scalar to quantify and compare performance trivializes the fine-grained nuances of model behavior. Additionally, metrics do not yield actionable diagnostics for model improvement, thus requiring extensive manual efforts of scientists, involving sifting through vast datasets and attempting hit-or-miss adjustments to training data or setups. In this work, we address the shortcomings of quantitative metrics by proposing QualEval, which uses automated qualitative evaluation as a vehicle for model improvement. QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights that when applied, accelerate model improvement. The insights are supported by a dashboard report with fine-grained visualizations and human-interpretable analyses. We corroborate the faithfulness of QualEval by demonstrating that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative on a challenging dialogue task (DialogSum) when compared to baselines. QualEval successfully increases the pace and quality of model development by eliminating the need of arduous manual analysis, thus serving as a data-scientist-in-a-box.

pdf bib
Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)
Ameet Deshpande | EunJeong Hwang | Vishvak Murahari | Joon Sung Park | Diyi Yang | Ashish Sabharwal | Karthik Narasimhan | Ashwin Kalyan
Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)

2023

pdf bib
RL4F: Generating Natural Language Feedback with Reinforcement Learning for Repairing Model Outputs
Afra Feyza Akyurek | Ekin Akyurek | Ashwin Kalyan | Peter Clark | Derry Tanti Wijaya | Niket Tandon
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite their unprecedented success, even the largest language models make mistakes. Similar to how humans learn and improve using feedback, previous work proposed providing language models with natural language feedback to guide them in repairing their outputs. Because human-generated critiques are expensive to obtain, researchers have devised learned critique generators in lieu of human critics while assuming one can train downstream models to utilize generated feedback. However, this approach does not apply to black-box or limited access models such as ChatGPT, as they cannot be fine-tuned. Moreover, in the era of large general-purpose language agents, fine-tuning is neither computationally nor spatially efficient as it results in multiple copies of the network. In this work, we introduce RL4F (Reinforcement Learning for Feedback), a multi-agent collaborative framework where the critique generator is trained to maximize end-task performance of GPT-3, a fixed model more than 200 times its size. RL4F produces critiques that help GPT-3 revise its outputs. We study three datasets for action planning, summarization and alphabetization and show relative improvements up to 10% in multiple text similarity metrics over other learned, retrieval-augmented or prompting-based critique generators.

pdf bib
Toxicity in chatgpt: Analyzing persona-assigned language models
Ameet Deshpande | Vishvak Murahari | Tanmay Rajpurohit | Ashwin Kalyan | Karthik Narasimhan
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) have shown incredible capabilities and transcended the natural language processing (NLP) community, with adoption throughout many services like healthcare, therapy, education, and customer service. Since users include people with critical information needs like students or patients engaging with chatbots, the safety of these systems is of prime importance. Legislation has recognized its significance and recently drafted a “Blueprint For An AI Bill Of Rights” which calls for domain experts to identify risks and potential impact of AI systems. To this end, we systematically evaluate toxicity in over half a million generations of ChatGPT, a popular dialogue-based LLM. We find that setting the system parameter of ChatGPT by assigning it a persona, say that of the boxer Muhammad Ali, significantly increases the toxicity of generations. Depending on the persona assigned to ChatGPT, its toxicity can increase up to , with outputs engaging in incorrect stereotypes, harmful dialogue, and hurtful opinions. Furthermore, we find concerning patterns where specific entities (e.g., certain races) are targeted more than others ( more) irrespective of the assigned persona, reflecting discriminatory biases in the model. Our findings show that multiple provisions in the legislative blueprint are being violated, and we hope that the broader AI community rethinks the efficacy of current safety guardrails and develops better techniques that lead to robust, safe, and trustworthy AI.

pdf bib
C-STS: Conditional Semantic Textual Similarity
Ameet Deshpande | Carlos Jimenez | Howard Chen | Vishvak Murahari | Victoria Graf | Tanmay Rajpurohit | Ashwin Kalyan | Danqi Chen | Karthik Narasimhan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Semantic textual similarity (STS) has been a cornerstone task in NLP that measures the degree of similarity between a pair of sentences, with applications in information retrieval, question answering, and embedding methods. However, it is an inherently ambiguous task, with the sentence similarity depending on the specific aspect of interest. We resolve this ambiguity by proposing a novel task called conditional STS (C-STS) which measures similarity conditioned on an aspect elucidated in natural language (hereon, condition). As an example, the similarity between the sentences “The NBA player shoots a three-pointer.” and “A man throws a tennis ball into the air to serve.” is higher for the condition “The motion of the ball.” (both upward) and lower for “The size of the ball.” (one large and one small). C-STS’s advantages are two-fold: (1) it reduces the subjectivity and ambiguity of STS, and (2) enables fine-grained similarity evaluation using diverse conditions. C-STS contains almost 20,000 instances from diverse domains and we evaluate several state-of-the-art models to demonstrate that even the most performant fine-tuning and in-context learning models (GPT-4, Flan, SimCSE) find it challenging, with Spearman correlation scores of <50. We encourage the community to evaluate their models on C-STS to provide a more holistic view of semantic similarity and natural language understanding.

pdf bib
Let GPT be a Math Tutor: Teaching Math Word Problem Solvers with Customized Exercise Generation
Zhenwen Liang | Wenhao Yu | Tanmay Rajpurohit | Peter Clark | Xiangliang Zhang | Ashwin Kalyan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In this paper, we present a novel approach for distilling math word problem solving capabilities from large language models (LLMs) into smaller, more efficient student models. Our approach is designed to consider the student model’s weaknesses and foster a tailored learning experience by generating targeted exercises aligned with educational science principles, such as knowledge tracing and personalized learning. Concretely, we let GPT-3 be a math tutor and run two steps iteratively: 1) assessing the student model’s current learning status on a GPT-generated exercise book, and 2) improving the student model by training it with tailored exercise samples generated by GPT-3. Experimental results reveal that our approach outperforms LLMs (e.g., GPT-3 and PaLM) in accuracy across three distinct benchmarks while employing significantly fewer parameters. Furthermore, we provide a comprehensive analysis of the various components within our methodology to substantiate their efficacy.

pdf bib
Anthropomorphization of AI: Opportunities and Risks
Ameet Deshpande | Tanmay Rajpurohit | Karthik Narasimhan | Ashwin Kalyan
Proceedings of the Natural Legal Language Processing Workshop 2023

Anthropomorphization is the tendency to attribute human-like traits to non-human entities. It is prevalent in many social contexts – children anthropomorphize toys, adults do so with brands, and it is a literary device. It is also a versatile tool in science, with behavioral psychology and evolutionary biology meticulously documenting its consequences. With widespread adoption of AI systems, and the push from stakeholders to make it human-like through alignment techniques, human voice, and pictorial avatars, the tendency for users to anthropomorphize it increases significantly. We take a dyadic approach to understanding this phenomenon with large language models (LLMs) by studying (1) the objective legal implications, as analyzed through the lens of the recent blueprint of AI bill of rights and the (2) subtle psychological aspects customization and anthropomorphization. We find that anthropomorphized LLMs customized for different user bases violate multiple provisions in the legislative blueprint. In addition, we point out that anthropomorphization of LLMs affects the influence they can have on their users, thus having the potential to fundamentally change the nature of human-AI interaction, with potential for manipulation and negative influence. With LLMs being hyper-personalized for vulnerable groups like children and patients among others, our work is a timely and important contribution. We propose a conservative strategy for the cautious use of anthropomorphization to improve trustworthiness of AI systems.

pdf bib
Estimating Numbers without Regression
Avijit Thawani | Jay Pujara | Ashwin Kalyan
Proceedings of the Fourth Workshop on Insights from Negative Results in NLP

Despite recent successes in language models, their ability to represent numbers is insufficient. Humans conceptualize numbers based on their magnitudes, effectively projecting them on a number line; whereas subword tokenization fails to explicitly capture magnitude by splitting numbers into arbitrary chunks. To alleviate this shortcoming, alternative approaches have been proposed that modify numbers at various stages of the language modeling pipeline. These methods change either the (1) notation in which numbers are written (eg scientific vs decimal), the (2) vocabulary used to represent numbers or the entire (3) architecture of the underlying language model, to directly regress to a desired number. Previous work suggests that architectural change helps achieve state-of-the-art on number estimation but we find an insightful ablation - changing the model”s vocabulary instead (eg introduce a new token for numbers in range 10-100) is a far better trade-off. In the context of masked number prediction, a carefully designed tokenization scheme is both the simplest to implement and sufficient, ie with similar performance to the state-of-the-art approach that requires making significant architectural changes. Finally, we report similar trends on the downstream task of numerical fact estimation (for Fermi Problems) and discuss reasons behind our findings.

2022

pdf bib
NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning Tasks
Swaroop Mishra | Arindam Mitra | Neeraj Varshney | Bhavdeep Sachdeva | Peter Clark | Chitta Baral | Ashwin Kalyan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Given the ubiquitous nature of numbers in text, reasoning with numbers to perform simple calculations is an important skill of AI systems. While many datasets and models have been developed to this end, state-of-the-art AI systems are brittle; failing to perform the underlying mathematical reasoning when they appear in a slightly different scenario. Drawing inspiration from GLUE that was proposed in the context of natural language understanding, we propose NumGLUE, a multi-task benchmark that evaluates the performance of AI systems on eight different tasks, that at their core require simple arithmetic understanding. We show that this benchmark is far from being solved with neural models including state-of-the-art large-scale language models performing significantly worse than humans (lower by 46.4 %). Further, NumGLUE promotes sharing knowledge across tasks, especially those with limited training data as evidenced by the superior performance (average gain of 3.4 % on each task) when a model is jointly trained on all the tasks as opposed to task-specific modeling. Finally, we hope that NumGLUE will encourage systems that perform robust and general arithmetic reasoning within language, a first step towards being able to perform more complex mathematical reasoning.

pdf bib
LILA: A Unified Benchmark for Mathematical Reasoning
Swaroop Mishra | Matthew Finlayson | Pan Lu | Leonard Tang | Sean Welleck | Chitta Baral | Tanmay Rajpurohit | Oyvind Tafjord | Ashish Sabharwal | Peter Clark | Ashwin Kalyan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Mathematical reasoning skills are essential for general-purpose intelligentsystems to perform tasks from grocery shopping to climate modeling.Towards evaluating and improving AI systems in this domain, we proposeLILA, a unified mathematical reasoning benchmark consisting of 23 diversetasks along four dimensions:(i) mathematical abilities e.g., arithmetic, calculus (ii) language format e.g., question-answering, fill-in-the-blanks (iii) language diversity e.g., no language, simple language (iv) external knowledge e.g., commonsense, physics. We construct our benchmark by extending 20 datasets benchmark by collecting task instructions and solutions in the form of Python programs,thereby obtaining explainable solutions in addition to the correct answer.We additionally introduce two evaluation datasets to measure out-of-distribution performance and robustness to language perturbation.Finally, we introduce BHASKARA,a general-purpose mathematical reasoning model trained on LILA. Importantly, we find that multi-tasking leads to significant improvements (average relative improvement of 21.83% F1 score vs. single-task models),while the best performing model only obtains 60.40%,indicating the room for improvement in general mathematical reasoning and understanding.

2021

pdf bib
How much coffee was consumed during EMNLP 2019? Fermi Problems: A New Reasoning Challenge for AI
Ashwin Kalyan | Abhinav Kumar | Arjun Chandrasekaran | Ashish Sabharwal | Peter Clark
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Many real-world problems require the combined application of multiple reasoning abilities—employing suitable abstractions, commonsense knowledge, and creative synthesis of problem-solving strategies. To help advance AI systems towards such capabilities, we propose a new reasoning challenge, namely Fermi Problems (FPs), which are questions whose answers can only be approximately estimated because their precise computation is either impractical or impossible. For example, “How much would the sea level rise if all ice in the world melted?” FPs are commonly used in quizzes and interviews to bring out and evaluate the creative reasoning abilities of humans. To do the same for AI systems, we present two datasets: 1) A collection of 1k real-world FPs sourced from quizzes and olympiads; and 2) a bank of 10k synthetic FPs of intermediate complexity to serve as a sandbox for the harder real-world challenge. In addition to question-answer pairs, the datasets contain detailed solutions in the form of an executable program and supporting facts, helping in supervision and evaluation of intermediate steps. We demonstrate that even extensively fine-tuned large-scale language models perform poorly on these datasets, on average making estimates that are off by two orders of magnitude. Our contribution is thus the crystallization of several unsolved AI problems into a single, new challenge that we hope will spur further advances in building systems that can reason.