Atharva Tendle
2024
Leveraging Contextual Information for Effective Entity Salience Detection
Rajarshi Bhowmik
|
Marco Ponza
|
Atharva Tendle
|
Anant Gupta
|
Rebecca Jiang
|
Xingyu Lu
|
Qian Zhao
|
Daniel Preotiuc-Pietro
Findings of the Association for Computational Linguistics: NAACL 2024
In text documents such as news articles, the content and key events usually revolve around a subset of all the entities mentioned in a document. These entities, often deemed as salient entities, provide useful cues of the aboutness of a document to a reader. Identifying the salience of entities was found helpful in several downstream applications such as search, ranking, and entity-centric summarization, among others. Prior work on salient entity detection mainly focused on machine learning models that require heavy feature engineering. We show that fine-tuning medium-sized language models with a cross-encoder style architecture yields substantial performance gains over feature engineering approaches. To this end, we conduct a comprehensive benchmarking of four publicly available datasets using models representative of the medium-sized pre-trained language model family. Additionally, we show that zero-shot prompting of instruction-tuned language models yields inferior results, indicating the task’s uniqueness and complexity.
Search
Fix data
Co-authors
- Rajarshi Bhowmik 1
- Anant Gupta 1
- Rebecca Jiang 1
- Xingyu Lu 1
- Marco Ponza 1
- show all...