Atreya Ghosal
2024
On Evaluating Explanation Utility for Human-AI Decision Making in NLP
Fateme Hashemi Chaleshtori
|
Atreya Ghosal
|
Alexander Gill
|
Purbid Bambroo
|
Ana Marasovic
Findings of the Association for Computational Linguistics: EMNLP 2024
Is explainability a false promise? This debate has emerged from the insufficient evidence that explanations help people in situations they are introduced for. More human-centered, application-grounded evaluations of explanations are needed to settle this. Yet, with no established guidelines for such studies in NLP, researchers accustomed to standardized proxy evaluations must discover appropriate measurements, tasks, datasets, and sensible models for human-AI teams in their studies. To aid with this, we first review existing metrics suitable for application-grounded evaluation. We then establish criteria to select appropriate datasets, and using them, we find that only 4 out of over 50 datasets available for explainability research in NLP meet them. We then demonstrate the importance of reassessing the state of the art to form and study human-AI teams: teaming people with models for certain tasks might only now start to make sense, and for others, it remains unsound. Finally, we present the exemplar studies of human-AI decision-making for one of the identified tasks — verifying the correctness of a legal claim given a contract. Our results show that providing AI predictions, with or without explanations, does not cause decision makers to speed up their work without compromising performance. We argue for revisiting the setup of human-AI teams and improving automatic deferral of instances to AI, where explanations could play a useful role.
2022
Is My Model Using the Right Evidence? Systematic Probes for Examining Evidence-Based Tabular Reasoning
Vivek Gupta
|
Riyaz A. Bhat
|
Atreya Ghosal
|
Manish Shrivastava
|
Maneesh Singh
|
Vivek Srikumar
Transactions of the Association for Computational Linguistics, Volume 10
Neural models command state-of-the-art performance across NLP tasks, including ones involving “reasoning”. Models claiming to reason about the evidence presented to them should attend to the correct parts of the input while avoiding spurious patterns therein, be self-consistent in their predictions across inputs, and be immune to biases derived from their pre-training in a nuanced, context- sensitive fashion. Do the prevalent *BERT- family of models do so? In this paper, we study this question using the problem of reasoning on tabular data. Tabular inputs are especially well-suited for the study—they admit systematic probes targeting the properties listed above. Our experiments demonstrate that a RoBERTa-based model, representative of the current state-of-the-art, fails at reasoning on the following counts: it (a) ignores relevant parts of the evidence, (b) is over- sensitive to annotation artifacts, and (c) relies on the knowledge encoded in the pre-trained language model rather than the evidence presented in its tabular inputs. Finally, through inoculation experiments, we show that fine- tuning the model on perturbed data does not help it overcome the above challenges.
Search
Co-authors
- Fateme Hashemi Chaleshtori 1
- Alexander Gill 1
- Purbid Bambroo 1
- Ana Marasović 1
- Vivek Gupta 1
- show all...