Atsumoto Ohashi


pdf bib
Post-processing Networks: Method for Optimizing Pipeline Task-oriented Dialogue Systems using Reinforcement Learning
Atsumoto Ohashi | Ryuichiro Higashinaka
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Many studies have proposed methods for optimizing the dialogue performance of an entire pipeline task-oriented dialogue system by jointly training modules in the system using reinforcement learning. However, these methods are limited in that they can only be applied to modules implemented using trainable neural-based methods. To solve this problem, we propose a method for optimizing a pipeline system composed of modules implemented with arbitrary methods for dialogue performance. With our method, neural-based components called post-processing networks (PPNs) are installed inside such a system to post-process the output of each module. All PPNs are updated to improve the overall dialogue performance of the system by using reinforcement learning, not necessitating each module to be differentiable. Through dialogue simulation and human evaluation on the MultiWOZ dataset, we show that our method can improve the dialogue performance of pipeline systems consisting of various modules.

pdf bib
Adaptive Natural Language Generation for Task-oriented Dialogue via Reinforcement Learning
Atsumoto Ohashi | Ryuichiro Higashinaka
Proceedings of the 29th International Conference on Computational Linguistics

When a natural language generation (NLG) component is implemented in a real-world task-oriented dialogue system, it is necessary to generate not only natural utterances as learned on training data but also utterances adapted to the dialogue environment (e.g., noise from environmental sounds) and the user (e.g., users with low levels of understanding ability). Inspired by recent advances in reinforcement learning (RL) for language generation tasks, we propose ANTOR, a method for Adaptive Natural language generation for Task-Oriented dialogue via Reinforcement learning. In ANTOR, a natural language understanding (NLU) module, which corresponds to the user’s understanding of system utterances, is incorporated into the objective function of RL. If the NLG’s intentions are correctly conveyed to the NLU, which understands a system’s utterances, the NLG is given a positive reward. We conducted experiments on the MultiWOZ dataset, and we confirmed that ANTOR could generate adaptive utterances against speech recognition errors and the different vocabulary levels of users.


pdf bib
Influence of user personality on dialogue task performance: A case study using a rule-based dialogue system
Ao Guo | Atsumoto Ohashi | Ryu Hirai | Yuya Chiba | Yuiko Tsunomori | Ryuichiro Higashinaka
Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI

Endowing a task-oriented dialogue system with adaptiveness to user personality can greatly help improve the performance of a dialogue task. However, such a dialogue system can be practically challenging to implement, because it is unclear how user personality influences dialogue task performance. To explore the relationship between user personality and dialogue task performance, we enrolled participants via crowdsourcing to first answer specified personality questionnaires and then chat with a dialogue system to accomplish assigned tasks. A rule-based dialogue system on the prevalent Multi-Domain Wizard-of-Oz (MultiWOZ) task was used. A total of 211 participants’ personalities and their 633 dialogues were collected and analyzed. The results revealed that sociable and extroverted people tended to fail the task, whereas neurotic people were more likely to succeed. We extracted features related to user dialogue behaviors and performed further analysis to determine which kind of behavior influences task performance. As a result, we identified that average utterance length and slots per utterance are the key features of dialogue behavior that are highly correlated with both task performance and user personality.