Avinash Kumar Singh


pdf bib
Weakly Supervised Context-based Interview Question Generation
Samiran Pal | Kaamraan Khan | Avinash Kumar Singh | Subhasish Ghosh | Tapas Nayak | Girish Palshikar | Indrajit Bhattacharya
Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

We explore the task of automated generation of technical interview questions from a given textbook. Such questions are different from those for reading comprehension studied in question generation literature. We curate a context based interview questions data set for Machine Learning and Deep Learning from two popular textbooks. We first explore the possibility of using a large generative language model (GPT-3) for this task in a zero shot setting. We then evaluate the performance of smaller generative models such as BART fine-tuned on weakly supervised data obtained using GPT-3 and hand-crafted templates. We deploy an automatic question importance assignment technique to figure out suitability of a question in a technical interview. It improves the evaluation results in many dimensions. We dissect the performance of these models for this task and also scrutinize the suitability of questions generated by them for use in technical interviews.


pdf bib
Extracting Message Sequence Charts from Hindi Narrative Text
Swapnil Hingmire | Nitin Ramrakhiyani | Avinash Kumar Singh | Sangameshwar Patil | Girish Palshikar | Pushpak Bhattacharyya | Vasudeva Varma
Proceedings of the First Joint Workshop on Narrative Understanding, Storylines, and Events

In this paper, we propose the use of Message Sequence Charts (MSC) as a representation for visualizing narrative text in Hindi. An MSC is a formal representation allowing the depiction of actors and interactions among these actors in a scenario, apart from supporting a rich framework for formal inference. We propose an approach to extract MSC actors and interactions from a Hindi narrative. As a part of the approach, we enrich an existing event annotation scheme where we provide guidelines for annotation of the mood of events (realis vs irrealis) and guidelines for annotation of event arguments. We report performance on multiple evaluation criteria by experimenting with Hindi narratives from Indian History. Though Hindi is the fourth most-spoken first language in the world, from the NLP perspective it has comparatively lesser resources than English. Moreover, there is relatively less work in the context of event processing in Hindi. Hence, we believe that this work is among the initial works for Hindi event processing.