Azlaan Mustafa Samad
2022
Empathetic Persuasion: Reinforcing Empathy and Persuasiveness in Dialogue Systems
Azlaan Mustafa Samad
|
Kshitij Mishra
|
Mauajama Firdaus
|
Asif Ekbal
Findings of the Association for Computational Linguistics: NAACL 2022
Persuasion is an intricate process involving empathetic connection between two individuals. Plain persuasive responses may make a conversation non-engaging. Even the most well-intended and reasoned persuasive conversations can fall through in the absence of empathetic connection between the speaker and listener. In this paper, we propose a novel task of incorporating empathy when generating persuasive responses. We develop an empathetic persuasive dialogue system by fine-tuning a maximum likelihood Estimation (MLE)-based language model in a reinforcement learning (RL) framework. To design feedbacks for our RL-agent, we define an effective and efficient reward function considering consistency, repetitiveness, emotion and persuasion rewards to ensure consistency, non-repetitiveness, empathy and persuasiveness in the generated responses. Due to lack of emotion annotated persuasive data, we first annotate the existing Persuaion For Good dataset with emotions, then build transformer based classifiers to provide emotion based feedbacks to our RL agent. Experimental results confirm that our proposed model increases the rate of generating persuasive responses as compared to the available state-of-the-art dialogue models while making the dialogues empathetically more engaging and retaining the language quality in responses.
PEPDS: A Polite and Empathetic Persuasive Dialogue System for Charity Donation
Kshitij Mishra
|
Azlaan Mustafa Samad
|
Palak Totala
|
Asif Ekbal
Proceedings of the 29th International Conference on Computational Linguistics
Persuasive conversations for a social cause often require influencing other person’s attitude or intention that may fail even with compelling arguments. The use of emotions and different types of polite tones as needed with facts may enhance the persuasiveness of a message. To incorporate these two aspects, we propose a polite, empathetic persuasive dialogue system (PEPDS). First, in a Reinforcement Learning setting, a Maximum Likelihood Estimation loss based model is fine-tuned by designing an efficient reward function consisting of five different sub rewards viz. Persuasion, Emotion, Politeness-Strategy Consistency, Dialogue-Coherence and Non-repetitiveness. Then, to generate empathetic utterances for non-empathetic ones, an Empathetic transfer model is built upon the RL fine-tuned model. Due to the unavailability of an appropriate dataset, by utilizing the PERSUASIONFORGOOD dataset, we create two datasets, viz. EPP4G and ETP4G. EPP4G is used to train three transformer-based classification models as per persuasiveness, emotion and politeness strategy to achieve respective reward feedbacks. The ETP4G dataset is used to train an empathetic transfer model. Our experimental results demonstrate that PEPDS increases the rate of persuasive responses with emotion and politeness acknowledgement compared to the current state-of-the-art dialogue models, while also enhancing the dialogue’s engagement and maintaining the linguistic quality.
Search