Adeen Flinker


2025

pdf bib
AAD-LLM: Neural Attention-Driven Auditory Scene Understanding
Xilin Jiang | Sukru Samet Dindar | Vishal Choudhari | Stephan Bickel | Ashesh Mehta | Guy M McKhann | Daniel Friedman | Adeen Flinker | Nima Mesgarani
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Auditory foundation models, including auditory large language models (LLMs), process all sound inputs equally, independent of listener perception. However, human auditory perception is inherently selective: listeners focus on specific speakers while ignoring others in complex auditory scenes. Existing models do not incorporate this selectivity, limiting their ability to generate perception-aligned responses. To address this, we introduce intention-informed auditory scene understanding (II-ASU) and present Auditory Attention-Driven LLM (AAD-LLM), a prototype system that integrates brain signals to infer listener attention. AAD-LLM extends an auditory LLM by incorporating intracranial electroencephalography (iEEG) recordings to decode which speaker a listener is attending to and refine responses accordingly. The model first predicts the attended speaker from neural activity, then conditions response generation on this inferred attentional state. We evaluate AAD-LLM on speaker description, speech transcription and extraction, and question answering in multitalker scenarios, with both objective and subjective ratings showing improved alignment with listener intention. By taking a first step toward intention-aware auditory AI, this work explores a new paradigm where listener perception informs machine listening, paving the way for future listener-centered auditory systems. Demo available.

pdf bib
A Scalable Pipeline for Estimating Verb Frame Frequencies Using Large Language Models
Adam M. Morgan | Adeen Flinker
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

We present an automated pipeline for estimating Verb Frame Frequencies (VFFs), the frequency with which a verb appears in particular syntactic frames. VFFs provide a powerful window into syntax in both human and machine language systems, but existing tools for calculating them are limited in scale, accuracy, or accessibility. We use large language models (LLMs) to generate a corpus of sentences containing 476 English verbs. Next, by instructing an LLM to behave like an expert linguist, we had it analyze the syntactic structure of the sentences in this corpus. This pipeline outperforms two widely used syntactic parsers across multiple evaluation datasets. Furthermore, it requires far fewer resources than manual parsing (the gold-standard), thereby enabling rapid, scalable VFF estimation. Using the LLM parser, we produce a new VFF database with broader verb coverage, finer-grained syntactic distinctions, and explicit estimates of the relative frequencies of structural alternates commonly studied in psycholinguistics. The pipeline is easily customizable and extensible to new verbs, syntactic frames, and even other languages. We present this work as a proof of concept for automated frame frequency estimation, and release all code and data to support future research.