Akriti Jain
2025
Doc2Chart: Intent-Driven Zero-Shot Chart Generation from Documents
Akriti Jain
|
Pritika Ramu
|
Aparna Garimella
|
Apoorv Saxena
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have demonstrated strong capabilities in transforming text descriptions or tables to data visualizations via instruction-tuning methods. However, it is not straightforward to apply these methods directly for a more real-world use case of visualizing data from long documents based on user-given intents, as opposed to the user pre-selecting the relevant content manually. We introduce the task of _intent-based chart generation_ from documents: given a user-specified intent and document(s), the goal is to generate a chart adhering to the intent and grounded on the document(s) in a zero-shot setting. We propose an unsupervised, two-staged framework in which an LLM first extracts relevant information from the document(s) by decomposing the intent and iteratively validates and refines this data. Next, a heuristic-guided module selects an appropriate chart type before final code generation. To assess the data accuracy of the generated charts, we propose an attribution-based metric that uses a structured textual representation of charts, instead of relying on visual decoding metrics that often fail to capture the chart data effectively. To validate our approach, we curate a dataset comprising of 1,242 <intent, document, charts> tuples from two domains, finance and scientific, in contrast to the existing datasets that are largely limited to parallel text descriptions/ tables and their corresponding charts. We compare our approach with baselines using single-shot chart generation using LLMs and query-based retrieval methods; our method outperforms by upto 9 points and 17 points in terms of chart data accuracy and chart type respectively over the best baselines.
FiRST: Finetuning Router-Selective Transformers for Input-Adaptive Latency Reduction
Akriti Jain
|
Saransh Sharma
|
Koyel Mukherjee
|
Soumyabrata Pal
Findings of the Association for Computational Linguistics: EMNLP 2025
Auto-regressive Large Language Models (LLMs) demonstrate remarkable performance across different domains such as vision and language tasks. However, due to sequential processing through multiple transformer layers, autoregressive decoding faces significant computational challenges, particularly in resource-constrained environments like mobile and edge devices. Existing approaches in literature that aim to improve latency via skipping layers have two distinct flavors: (1) early exit, and (2) input-agnostic heuristics where tokens exit at pre-determined layers irrespective of input sequence. Both the above strategies have limitations, the former cannot be applied in the presence of KV caching, which is essential for speed-ups in modern inference frameworks, and the latter fails to capture variation in layer importance across tasks or, more generally, across input sequences. To address these limitations, we propose FiRST, a model-agnostic framework that reduces inference latency by using layer-specific routers to adaptively skip transformer layers during decoding, based on routing decisions made from the input prompt in the prefill stage. FiRST remains fully compatible with KV caching, enabling faster decoding while maintaining quality. Our method reveals that input adaptivity is essential: Different tasks rely on different subsets of layers to evolve meaningful representations. Extensive experiments show that FiRST significantly reduces latency while outperforming existing layer selection strategies in quality. It retains performance comparable to the base model without skipping. FiRST is thus a promising and efficient solution for LLM deployment in low-resource environments.
2020
IlliniMet: Illinois System for Metaphor Detection with Contextual and Linguistic Information
Hongyu Gong
|
Kshitij Gupta
|
Akriti Jain
|
Suma Bhat
Proceedings of the Second Workshop on Figurative Language Processing
Metaphors are rhetorical use of words based on the conceptual mapping as opposed to their literal use. Metaphor detection, an important task in language understanding, aims to identify metaphors in word level from given sentences. We present IlliniMet, a system to automatically detect metaphorical words. Our model combines the strengths of the contextualized representation by the widely used RoBERTa model and the rich linguistic information from external resources such as WordNet. The proposed approach is shown to outperform strong baselines on a benchmark dataset. Our best model achieves F1 scores of 73.0% on VUA ALLPOS, 77.1% on VUA VERB, 70.3% on TOEFL ALLPOS and 71.9% on TOEFL VERB.
Search
Fix author
Co-authors
- Suma Bhat 1
- Aparna Garimella 1
- Hongyu Gong 1
- Kshitij Gupta 1
- Koyel Mukherjee 1
- show all...