Almog Gueta


2025

pdf bib
Can LLMs Learn Macroeconomic Narratives from Social Media?
Almog Gueta | Amir Feder | Zorik Gekhman | Ariel Goldstein | Roi Reichart
Findings of the Association for Computational Linguistics: NAACL 2025

This study empirically tests the Narrative Economics hypothesis, which posits that narratives (ideas that are spread virally and affect public beliefs) can influence economic fluctuations. We introduce two curated datasets containing posts from X (formerly Twitter) which capture economy-related narratives (Data will be shared upon paper acceptance). Employing Natural Language Processing (NLP) methods, we extract and summarize narratives from the tweets. We test their predictive power for macroeconomic forecasting by incorporating the tweets’ or the extracted narratives’ representations in downstream financial prediction tasks. Our work highlights the challenges in improving macroeconomic models with narrative data, paving the way for the research community to realistically address this important challenge. From a scientific perspective, our investigation offers valuable insights and NLP tools for narrative extraction and summarization using Large Language Models (LLMs), contributing to future research on the role of narratives in economics.

pdf bib
RefVNLI: Towards Scalable Evaluation of Subject-driven Text-to-image Generation
Aviv Slobodkin | Hagai Taitelbaum | Yonatan Bitton | Brian Gordon | Michal Sokolik | Nitzan Bitton Guetta | Almog Gueta | Royi Rassin | Dani Lischinski | Idan Szpektor
Findings of the Association for Computational Linguistics: EMNLP 2025

Subject-driven text-to-image (T2I) generation aims to produce images that align with a given textual description, while preserving the visual identity from a referenced subject image. Despite its broad downstream applicability—ranging from enhanced personalization in image generation to consistent character representation in video rendering—progress in this field is limited by the lack of reliable automatic evaluation. Existing methods either assess only one aspect of the task (i.e., textual alignment or subject preservation), misalign with human judgments, or rely on costly API-based evaluation. To address this gap, we introduce RefVNLI, a cost-effective metric that evaluates both textual alignment and subject preservation in a single run. Trained on a large-scale dataset derived from video-reasoning benchmarks and image perturbations, RefVNLI outperforms or statistically matches existing baselines across multiple benchmarks and subject categories (e.g., Animal, Object), achieving up to 6.4-point gains in textual alignment and 5.9-point gains in subject preservation.

2023

pdf bib
Knowledge is a Region in Weight Space for Fine-tuned Language Models
Almog Gueta | Elad Venezian | Colin Raffel | Noam Slonim | Yoav Katz | Leshem Choshen
Findings of the Association for Computational Linguistics: EMNLP 2023

Research on neural networks has focused on understanding a single model trained on a single dataset. However, relatively little is known about the relationships between different models, particularly those trained or tested on different datasets. We address this by studying how the weight space and the underlying loss landscape of different models are interconnected. Specifically, we demonstrate that finetuned models that were optimized for high performance, reside in well-defined regions in weight space, and vice versa – that any model that resides anywhere in those regions also exhibits high performance. Notably, we show that language models that have been finetuned on the same dataset form a tight cluster in the weight space, while models finetuned on different datasets from the same underlying task form a looser cluster. Moreover, traversing around the region between the models leads to new models that perform comparably or even better than models obtained via finetuning, even on tasks that the original models were not finetuned on. Our findings provide insight into the relationships between models, demonstrating that a model positioned between two similar models can acquire the knowledge of both. We leverage this and design a method for selecting a better model for efficient finetuning. Specifically, we show that starting from the center of the region is as effective, if not more, than using the pretrained model in 11 out of 12 datasets, resulting in an average accuracy improvement of 3.06.