Asaf Shabtai


2025

pdf bib
DIESEL: A Lightweight Inference-Time Safety Enhancement for Language Models
Ben Ganon | Alon Zolfi | Omer Hofman | Inderjeet Singh | Hisashi Kojima | Yuval Elovici | Asaf Shabtai
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have demonstrated impressive performance across a wide range of tasks, including open-ended dialogue, driving advancements in virtual assistants and other interactive systems. However, these models often generate outputs misaligned with human values, such as ethical norms and safety constraints, resulting in potentially harmful or inappropriate responses. While several techniques have been proposed to address this problem, they typically involve computationally intensive training procedures or introduce substantial inference-time latency. In this paper, we present DIESEL, a lightweight inference-guidance technique that can be seamlessly integrated into any autoregressive LLM to semantically filter undesirable content during generation. DIESEL guides generation by reranking token candidates according to their semantic similarity to predefined negative concepts in the latent space. It can serve either as a standalone safeguard or as an auxiliary defense layer, enhancing response safety without requiring model fine-tuning or additional data. We demonstrate DIESEL’s effectiveness on state-of-the-art conversational models, including in adversarial jailbreak scenarios. Furthermore, we show that DIESEL generalizes beyond safety applications, enabling flexible and domain-specific response filtering.

pdf bib
Tag&Tab: Pretraining Data Detection in Large Language Models Using Keyword-Based Membership Inference Attack
Sagiv Antebi | Edan Habler | Asaf Shabtai | Yuval Elovici
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) have become essential tools for digital task assistance. Their training relies heavily on the collection of vast amounts of data, which may include copyright-protected or sensitive information. Recent studies on detecting pretraining data in LLMs have primarily focused on sentence- or paragraph-level membership inference attacks (MIAs), usually involving probability analysis of the target model’s predicted tokens. However, these methods often exhibit poor accuracy, failing to account for the semantic importance of textual content and word significance. To address these shortcomings, we propose Tag&Tab, a novel approach for detecting data used in LLM pretraining. Our method leverages established natural language processing (NLP) techniques to tag keywords in the input text, a process we term Tagging. Then, the LLM is used to obtain probabilities for these keywords and calculate their average log-likelihood to determine input text membership, a process we refer to as Tabbing. Our experiments on four benchmark datasets (BookMIA, MIMIR, PatentMIA, and the Pile) and several open-source LLMs of varying sizes demonstrate an average increase in AUC scores ranging from 5.3% to 17.6% over state-of-the-art methods. Tag&Tab not only sets a new standard for data leakage detection in LLMs, but its outstanding performance is a testament to the importance of words in MIAs on LLMs.