Auguste Poiroux
2025
Reliable Evaluation and Benchmarks for Statement Autoformalization
Auguste Poiroux
|
Gail Weiss
|
Viktor Kunčak
|
Antoine Bosselut
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Evaluating statement autoformalization, translating natural language mathematics into formal languages like Lean 4, remains a significant challenge, with few metrics, datasets, and standards to robustly measure progress. In this work, we present a comprehensive approach combining improved metrics, robust benchmarks, and systematic evaluation, to fill this gap. First, we introduce BEq+, an automated metric that correlates strongly with human judgment, along with ProofNetVerif, a new dataset for assessing the quality of evaluation metrics, containing 3,752 annotated examples. Second, we develop two new autoformalization benchmarks: ProofNet#, a corrected version of ProofNet, and RLM25, with 619 new pairs of research-level mathematics from six formalization projects. Through systematic experimentation across these benchmarks, we find that current techniques can achieve up to 45.1% accuracy on undergraduate mathematics but struggle with research-level content without proper context. Our work establishes a reliable foundation for evaluating and advancing autoformalization systems.
RLMEval: Evaluating Research-Level Neural Theorem Proving
Auguste Poiroux
|
Antoine Bosselut
|
Viktor Kunčak
Findings of the Association for Computational Linguistics: EMNLP 2025
Despite impressive results on curated benchmarks, the practical impact of large language models (LLMs) on research-level neural theorem proving and proof autoformalization is still limited. We introduce RLMEval, an evaluation suite for these tasks, focusing on research-level mathematics from real-world Lean formalization projects. RLMEval targets the evaluation of neural theorem proving and proof autoformalization on challenging research-level theorems by leveraging real Lean Blueprint formalization projects. Our evaluation of state-of-the-art models on RLMEval, comprising 613 theorems from 6 Lean projects, reveals a significant gap: progress on existing benchmarks does not readily translate to these more realistic settings, with the best model achieving only a 10.3% pass rate. RLMEval provides a new, challenging benchmark designed to guide and accelerate progress in automated reasoning for formal mathematics.