Badr Alkhamissi

Also published as: Badr AlKhamissi


2023

pdf bib
ALERT: Adapt Language Models to Reasoning Tasks
Ping Yu | Tianlu Wang | Olga Golovneva | Badr AlKhamissi | Siddharth Verma | Zhijing Jin | Gargi Ghosh | Mona Diab | Asli Celikyilmaz
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in large language models have enabled them to perform well on complex tasks that require step-by-step reasoning with few-shot learning. However, it is unclear whether these models are applying reasoning skills they have learnt during pre-training , or if they are simply memorizing their training corpus at finer granularity and have learnt to better understand their context. To address this question, we introduce {pasted macro ‘OUR’}model, a benchmark and suite of analyses for evaluating reasoning skills of language models. {pasted macro ‘OUR’}model enables comparing pre-trained and finetuned models on complex tasks that require reasoning skills to solve. Our benchmark provides a test bed to asses any language model on fine-grained reasoning skills, which spans over 20 datasets and covers 10 different reasoning skills. By using {pasted macro ‘OUR’}model we further investigate the role of finetuning. Our extensive empirical analysis shows that language models learn more reasoning skills such as textual entailment, abductive reasoning, and analogical reasoning during the finetuning stage compared to pretraining stage. However, we also find that when language models are finetuned they tend to overfit to the prompt template, which hurts the robustness of models causing generalization problems.

pdf bib
Rosetta Stone at KSAA-RD Shared Task: A Hop From Language Modeling To Word–Definition Alignment
Ahmed Elbakry | Mohamed Gabr | Muhammad ElNokrashy | Badr AlKhamissi
Proceedings of ArabicNLP 2023

A Reverse Dictionary is a tool enabling users to discover a word based on its provided definition, meaning, or description. Such a technique proves valuable in various scenarios, aiding language learners who possess a description of a word without its identity, and benefiting writers seeking precise terminology. These scenarios often encapsulate what is referred to as the “Tip-of-the-Tongue” (TOT) phenomena. In this work, we present our winning solution for the Arabic Reverse Dictionary shared task. This task focuses on deriving a vector representation of an Arabic word from its accompanying description. The shared task encompasses two distinct subtasks: the first involves an Arabic definition as input, while the second employs an English definition. For the first subtask, our approach relies on an ensemble of finetuned Arabic BERT-based models, predicting the word embedding for a given definition. The final representation is obtained through averaging the output embeddings from each model within the ensemble. In contrast, the most effective solution for the second subtask involves translating the English test definitions into Arabic and applying them to the finetuned models originally trained for the first subtask. This straightforward method achieves the highest score across both subtasks.

pdf bib
OPT-R: Exploring the Role of Explanations in Finetuning and Prompting for Reasoning Skills of Large Language Models
Badr Alkhamissi | Siddharth Verma | Ping Yu | Zhijing Jin | Asli Celikyilmaz | Mona Diab
Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE)

We conduct a thorough investigation into the reasoning capabilities of Large Language Models (LLMs), focusing specifically on the Open Pretrained Transformers (OPT) models as a representative of such models. Our study entails finetuning three different sizes of OPT on a carefully curated reasoning corpus, resulting in two sets of finetuned models: OPT-R, finetuned without explanations, and OPT-RE, finetuned with explanations. We then evaluate all models on 57 out-of-domain tasks drawn from the Super-NaturalInstructions benchmark, covering 26 distinct reasoning skills, utilizing three prompting techniques. Through a comprehensive grid of 27 configurations and 6,156 test evaluations, we investigate the dimensions of finetuning, prompting, and scale to understand the role of explanations on different reasoning skills. Our findings reveal that having explanations in the fewshot exemplar has no significant impact on the model’s performance when the model is finetuned, while positively affecting the non-finetuned counterpart. Moreover, we observe a slight yet consistent increase in classification accuracy as we incorporate explanations during prompting and finetuning, respectively. Finally, we offer insights on which reasoning skills benefit the most from incorporating explanations during finetuning and prompting, such as Numerical (+20.4%) and Analogical (+13.9%) reasoning, as well as skills that exhibit negligible or negative effects.

2022

pdf bib
ToKen: Task Decomposition and Knowledge Infusion for Few-Shot Hate Speech Detection
Badr AlKhamissi | Faisal Ladhak | Srinivasan Iyer | Veselin Stoyanov | Zornitsa Kozareva | Xian Li | Pascale Fung | Lambert Mathias | Asli Celikyilmaz | Mona Diab
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Hate speech detection is complex; it relies on commonsense reasoning, knowledge of stereotypes, and an understanding of social nuance that differs from one culture to the next. It is also difficult to collect a large-scale hate speech annotated dataset. In this work, we frame this problem as a few-shot learning task, and show significant gains with decomposing the task into its “constituent” parts. In addition, we see that infusing knowledge from reasoning datasets (e.g. ATOMIC2020) improves the performance even further. Moreover, we observe that the trained models generalize to out-of-distribution datasets, showing the superiority of task decomposition and knowledge infusion compared to previously used methods. Concretely, our method outperforms the baseline by 17.83% absolute gain in the 16-shot case.

pdf bib
Meta AI at Arabic Hate Speech 2022: MultiTask Learning with Self-Correction for Hate Speech Classification
Badr AlKhamissi | Mona Diab
Proceedinsg of the 5th Workshop on Open-Source Arabic Corpora and Processing Tools with Shared Tasks on Qur'an QA and Fine-Grained Hate Speech Detection

In this paper, we tackle the Arabic Fine-Grained Hate Speech Detection shared task and demonstrate significant improvements over reported baselines for its three subtasks. The tasks are to predict if a tweet contains (1) Offensive language; and whether it is considered (2) Hate Speech or not and if so, then predict the (3) Fine-Grained Hate Speech label from one of six categories. Our final solution is an ensemble of models that employs multitask learning and a self-consistency correction method yielding 82.7% on the hate speech subtask—reflecting a 3.4% relative improvement compared to previous work.

2021

pdf bib
Adapting MARBERT for Improved Arabic Dialect Identification: Submission to the NADI 2021 Shared Task
Badr AlKhamissi | Mohamed Gabr | Muhammad ElNokrashy | Khaled Essam
Proceedings of the Sixth Arabic Natural Language Processing Workshop

In this paper, we tackle the Nuanced Arabic Dialect Identification (NADI) shared task (Abdul-Mageed et al., 2021) and demonstrate state-of-the-art results on all of its four subtasks. Tasks are to identify the geographic origin of short Dialectal (DA) and Modern Standard Arabic (MSA) utterances at the levels of both country and province. Our final model is an ensemble of variants built on top of MARBERT that achieves an F1-score of 34.03% for DA at the country-level development set—an improvement of 7.63% from previous work.

2020

pdf bib
Deep Diacritization: Efficient Hierarchical Recurrence for Improved Arabic Diacritization
Badr AlKhamissi | Muhammad ElNokrashy | Mohamed Gabr
Proceedings of the Fifth Arabic Natural Language Processing Workshop

We propose a novel architecture for labelling character sequences that achieves state-of-the-art results on the Tashkeela Arabic diacritization benchmark. The core is a two-level recurrence hierarchy that operates on the word and character levels separately—enabling faster training and inference than comparable traditional models. A cross-level attention module further connects the two and opens the door for network interpretability. The task module is a softmax classifier that enumerates valid combinations of diacritics. This architecture can be extended with a recurrent decoder that optionally accepts priors from partially diacritized text, which improves results. We employ extra tricks such as sentence dropout and majority voting to further boost the final result. Our best model achieves a WER of 5.34%, outperforming the previous state-of-the-art with a 30.56% relative error reduction.