Baikun Liang


pdf bib
Restatement and Question Generation for Counsellor Chatbot
John Lee | Baikun Liang | Haley Fong
Proceedings of the 1st Workshop on NLP for Positive Impact

Amidst rising mental health needs in society, virtual agents are increasingly deployed in counselling. In order to give pertinent advice, counsellors must first gain an understanding of the issues at hand by eliciting sharing from the counsellee. It is thus important for the counsellor chatbot to encourage the user to open up and talk. One way to sustain the conversation flow is to acknowledge the counsellee’s key points by restating them, or probing them further with questions. This paper applies models from two closely related NLP tasks — summarization and question generation — to restatement and question generation in the counselling context. We conducted experiments on a manually annotated dataset of Cantonese post-reply pairs on topics related to loneliness, academic anxiety and test anxiety. We obtained the best performance in both restatement and question generation by fine-tuning BertSum, a state-of-the-art summarization model, with the in-domain manual dataset augmented with a large-scale, automatically mined open-domain dataset.