2024
pdf
bib
abs
CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning
Weiqi Wang
|
Tianqing Fang
|
Chunyang Li
|
Haochen Shi
|
Wenxuan Ding
|
Baixuan Xu
|
Zhaowei Wang
|
Jiaxin Bai
|
Xin Liu
|
Cheng Jiayang
|
Chunkit Chan
|
Yangqiu Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The sequential process of conceptualization and instantiation is essential to generalizable commonsense reasoning as it allows the application of existing knowledge to unfamiliar scenarios. However, existing works tend to undervalue the step of instantiation and heavilyrely on pre-built concept taxonomies and human annotations to collect both types of knowledge, resulting in a lack of instantiated knowledge to complete reasoning, high cost, and limited scalability. To tackle these challenges, we introduce CANDLE (ConceptuAlizationand INstantiation Distillation from Large Language ModEls), a distillation framework that iteratively performs contextualized conceptualization and instantiation over commonsense knowledge bases by instructing large language models to generate both types of knowledge with critic filtering. By applying CANDLE to ATOMIC (Sap et al., 2019a), we construct a comprehensive knowledge base comprising six million conceptualizations and instantiated commonsense knowledge triples. Both types of knowledge are firmly rooted in the original ATOMIC dataset, and intrinsic evaluations demonstrate their exceptional quality and diversity. Empirical results indicate that distilling CANDLE on student models provides benefits across three downstream tasks. Our data and models are publicly available at https://github.com/HKUST-KnowComp/CANDLE.
pdf
bib
abs
KnowComp at DialAM-2024: Fine-tuning Pre-trained Language Models for Dialogical Argument Mining with Inference Anchoring Theory
Yuetong Wu
|
Yukai Zhou
|
Baixuan Xu
|
Weiqi Wang
|
Yangqiu Song
Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)
In this paper, we present our framework for DialAM-2024 TaskA: Identification of Propositional Relations and TaskB: Identification of Illocutionary Relations. The goal of task A is to detect argumentative relations between propositions in an argumentative dialogue. i.e., Inference, Conflict, Rephrase while task B aims to detect illocutionary relations between locutions and argumentative propositions in a dialogue. e.g., Asserting, Agreeing, Arguing, Disagreeing. Noticing the definition of the relations are strict and professional under the context of IAT framework, we meticulously curate prompts which not only incorporate formal definition of the relations, but also exhibit the subtle differences between them. The PTLMs are then fine-tuned on the human-designed prompts to enhance its discrimination capability in classifying different theoretical relations by learning from the human instruction and the ground truth samples. After extensive experiments, a fine-tuned DeBERTa-v3-base model exhibits the best performance among all PTLMs with an F1 score of 78.90% on Task B. It is worth noticing that our framework ranks #2 in the ILO - General official leaderboard.
pdf
bib
abs
MIND: Multimodal Shopping Intention Distillation from Large Vision-language Models for E-commerce Purchase Understanding
Baixuan Xu
|
Weiqi Wang
|
Haochen Shi
|
Wenxuan Ding
|
Huihao Jing
|
Tianqing Fang
|
Jiaxin Bai
|
Xin Liu
|
Changlong Yu
|
Zheng Li
|
Chen Luo
|
Qingyu Yin
|
Bing Yin
|
Long Chen
|
Yangqiu Song
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Improving user experience and providing personalized search results in E-commerce platforms heavily rely on understanding purchase intention. However, existing methods for acquiring large-scale intentions bank on distilling large language models with human annotation for verification. Such an approach tends to generate product-centric intentions, overlook valuable visual information from product images, and incurs high costs for scalability. To address these issues, we introduce MIND, a multimodal framework that allows Large Vision-Language Models (LVLMs) to infer purchase intentions from multimodal product metadata and prioritize human-centric ones. Using Amazon Review data, we apply MIND and create a multimodal intention knowledge base, which contains 1,264,441 intentions derived from 126,142 co-buy shopping records across 107,215 products. Extensive human evaluations demonstrate the high plausibility and typicality of our obtained intentions and validate the effectiveness of our distillation framework and filtering mechanism. Further experiments reveal the positive downstream benefits that MIND brings to intention comprehension tasks and highlight the importance of multimodal generation and role-aware filtering. Additionally, MIND shows robustness to different prompts and superior generation quality compared to previous methods.
pdf
bib
abs
GProofT: A Multi-dimension Multi-round Fact Checking Framework Based on Claim Fact Extraction
Jiayu Liu
|
Junhao Tang
|
Hanwen Wang
|
Baixuan Xu
|
Haochen Shi
|
Weiqi Wang
|
Yangqiu Song
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)
In the information era, the vast proliferation of online content poses significant challenges, particularly concerning the trustworthiness of these digital statements, which can have profound societal implications. Although it is possible to manually annotate and verify the authenticity of such content, the sheer volume and rapid pace of information generation render this approach impractical, both in terms of time and cost. Therefore, it is imperative to develop automated systems capable of validating online claims, ensuring that users can use the wealth of information available on the Internet effectively and reliably. Using primarily ChatGPT and the Google search API, GProofT fact checking framework generates question-answer pairs to systematically extract and verify the facts within claims. Based on the outcomes of these QA pairs, claims are subsequently labeled as Supported, Conflicted Evidence/Cherry-Picking, or Refuted. Shown by extensive experiments, GProofT Retrieval generally performs effectively in fact-checking and makes a substantial contribution to the task. Our code is released on https://github.com/HKUST-KnowComp/GProofT.
pdf
bib
abs
KnowComp at SemEval-2024 Task 9: Conceptualization-Augmented Prompting with Large Language Models for Lateral Reasoning
Weiqi Wang
|
Baixuan Xu
|
Haochen Shi
|
Jiaxin Bai
|
Qi Hu
|
Yangqiu Song
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Lateral thinking is essential in breaking away from conventional thought patterns and finding innovative solutions to problems. Despite this, language models often struggle with reasoning tasks that require lateral thinking. In this paper, we present our system for SemEval-2024 Task 9’s BrainTeaser challenge, which requires language models to answer brain teaser questions that typically involve lateral reasoning scenarios. Our framework is based on large language models and incorporates a zero-shot prompting method that integrates conceptualizations of automatically detected instances in the question. We also transform the task of question answering into a declarative format to enhance the discriminatory ability of large language models. Our zero-shot evaluation results with ChatGPT indicate that our approach outperforms baselines, including zero-shot and few-shot prompting and chain-of-thought reasoning. Additionally, our system ranks ninth on the official leaderboard, demonstrating its strong performance.
2023
pdf
bib
abs
CAT: A Contextualized Conceptualization and Instantiation Framework for Commonsense Reasoning
Weiqi Wang
|
Tianqing Fang
|
Baixuan Xu
|
Chun Yi Louis Bo
|
Yangqiu Song
|
Lei Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Commonsense reasoning, aiming at endowing machines with a human-like ability to make situational presumptions, is extremely challenging to generalize. For someone who barely knows about “meditation,” while is knowledgeable about “singing,” he can still infer that “meditation makes people relaxed” from the existing knowledge that “singing makes people relaxed” by first conceptualizing “singing” as a “relaxing event” and then instantiating that event to “meditation.”This process, known as conceptual induction and deduction, is fundamental to commonsense reasoning while lacking both labeled data and methodologies to enhance commonsense modeling. To fill such a research gap, we propose CAT (Contextualized ConceptuAlization and InsTantiation),a semi-supervised learning framework that integrates event conceptualization and instantiation to conceptualize commonsense knowledge bases at scale. Extensive experiments show that our framework achieves state-of-the-art performances on two conceptualization tasks, and the acquired abstract commonsense knowledge can significantly improve commonsense inference modeling. Our code, data, and fine-tuned models are publicly available at [
https://github.com/HKUST-KnowComp/CAT](
https://github.com/HKUST-KnowComp/CAT).
pdf
bib
abs
TILFA: A Unified Framework for Text, Image, and Layout Fusion in Argument Mining
Qing Zong
|
Zhaowei Wang
|
Baixuan Xu
|
Tianshi Zheng
|
Haochen Shi
|
Weiqi Wang
|
Yangqiu Song
|
Ginny Wong
|
Simon See
Proceedings of the 10th Workshop on Argument Mining
A main goal of Argument Mining (AM) is to analyze an author’s stance. Unlike previous AM datasets focusing only on text, the shared task at the 10th Workshop on Argument Mining introduces a dataset including both texts and images. Importantly, these images contain both visual elements and optical characters. Our new framework, TILFA (A Unified Framework for Text, Image, and Layout Fusion in Argument Mining), is designed to handle this mixed data. It excels at not only understanding text but also detecting optical characters and recognizing layout details in images. Our model significantly outperforms existing baselines, earning our team, KnowComp, the 1st place in the leaderboard of Argumentative Stance Classification subtask in this shared task.
pdf
bib
abs
CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering
Weiqi Wang
|
Tianqing Fang
|
Wenxuan Ding
|
Baixuan Xu
|
Xin Liu
|
Yangqiu Song
|
Antoine Bosselut
Findings of the Association for Computational Linguistics: EMNLP 2023
The task of zero-shot commonsense question answering evaluates models on their capacity to reason about general scenarios beyond those presented in specific datasets. Existing approaches for tackling this task leverage external knowledge from CommonSense Knowledge Bases (CSKBs) by pre-training the model on synthetic QA pairs constructed from CSKBs. In these approaches, negative examples (distractors) are formulated by randomly sampling from CSKBs using fairly primitive keyword constraints. However, two bottlenecks limit these approaches: the inherent incompleteness of CSKBs limits the semantic coverage of synthetic QA pairs, and the lack of human annotations makes the sampled negative examples potentially uninformative and contradictory. To tackle these limitations above, we propose Conceptualization-Augmented Reasoner (CAR), a zero-shot commonsense question-answering framework that fully leverages the power of conceptualization. Specifically, CAR abstracts a commonsense knowledge triple to many higher-level instances, which increases the coverage of the CSKB and expands the ground-truth answer space, reducing the likelihood of selecting false negative distractors. Extensive experiments demonstrate that CAR more robustly generalizes to answering questions about zero-shot commonsense scenarios than existing methods, including large language models, such as GPT3.5 and ChatGPT. Our code, data, and model checkpoints are available at https://github.com/HKUST-KnowComp/CAR.
pdf
bib
abs
QADYNAMICS: Training Dynamics-Driven Synthetic QA Diagnostic for Zero-Shot Commonsense Question Answering
Haochen Shi
|
Weiqi Wang
|
Tianqing Fang
|
Baixuan Xu
|
Wenxuan Ding
|
Xin Liu
|
Yangqiu Song
Findings of the Association for Computational Linguistics: EMNLP 2023
Zero-shot commonsense Question-Answering (QA) requires models to reason about general situations beyond specific benchmarks. State-of-the-art approaches fine-tune language models on QA pairs constructed from CommonSense Knowledge Bases (CSKBs) to equip the models with more commonsense knowledge in a QA context. However, current QA synthesis protocols may introduce noise from the CSKBs and generate ungrammatical questions and false negative options, which impede the model’s ability to generalize. To address these issues, we propose QADYNAMICS, a training dynamics-driven framework for QA diagnostics and refinement. Our approach analyzes the training dynamics of each QA pair at both the question level and option level, discarding machine-detectable artifacts by removing uninformative QA pairs and mislabeled or false-negative options. Extensive experiments demonstrate the effectiveness of our approach, which outperforms all baselines while using only 33% of the synthetic data, even including LLMs such as ChatGPT. Moreover, expert evaluations confirm that our framework significantly improves the quality of QA synthesis. Our code and model checkpoints are available at https://github.com/HKUST-KnowComp/QaDynamics.
pdf
bib
abs
KnowComp at SemEval-2023 Task 7: Fine-tuning Pre-trained Language Models for Clinical Trial Entailment Identification
Weiqi Wang
|
Baixuan Xu
|
Tianqing Fang
|
Lirong Zhang
|
Yangqiu Song
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
In this paper, we present our system for the textual entailment identification task as a subtask of the SemEval-2023 Task 7: Multi-evidence Natural Language Inference for Clinical Trial Data. The entailment identification task aims to determine whether a medical statement affirms a valid entailment given a clinical trial premise or forms a contradiction with it. Since the task is inherently a text classification task, we propose a system that performs binary classification given a statement and its associated clinical trial. Our proposed system leverages a human-defined prompt to aggregate the information contained in the statement, section name, and clinical trials. Pre-trained language models are then finetuned on the prompted input sentences to learn to discriminate the inference relation between the statement and clinical trial. To validate our system, we conduct extensive experiments with a wide variety of pre-trained language models. Our best system is built on DeBERTa-v3-large, which achieves an F1 score of 0.764 and secures the fifth rank in the official leaderboard.Further analysis indicates that leveraging our designed prompt is effective, and our model suffers from a low recall. Our code and pre-trained models are available at [
https://github.com/HKUST-KnowComp/NLI4CT](
https://github.com/HKUST-KnowComp/NLI4CT).
pdf
bib
abs
KnowComp Submission for WMT23 Sign Language Translation Task
Baixuan Xu
|
Haochen Shi
|
Tianshi Zheng
|
Qing Zong
|
Weiqi Wang
|
Zhaowei Wang
|
Yangqiu Song
Proceedings of the Eighth Conference on Machine Translation
Sign Language Translation (SLT) is a complex task that involves accurately interpreting sign language gestures and translating them into spoken or written language and vice versa. Its primary objective is to facilitate communication between individuals with hearing difficulties using deep learning systems. Existing approaches leverage gloss annotations of sign language gestures to assist the model in capturing the movement and differentiating various gestures. However, constructing a large-scale gloss-annotated dataset is both expensive and impractical to cover multiple languages, and pre-trained generative models cannot be efficiently used due to the lack of textual source context in SLT. To address these challenges, we propose a gloss-free framework for the WMT23 SLT task. Our system primarily consists of a visual extractor for extracting video embeddings and a generator responsible for producing the translated text. We also employ an embedding alignment block that is trained to align the embedding space of the visual extractor with that of the generator. Despite undergoing extensive training and validation, our system consistently falls short of meeting the baseline performance. Further analysis shows that our model’s poor projection rate prevents it from learning diverse visual embeddings. Our codes and model checkpoints are available at https://github.com/HKUST-KnowComp/SLT.