Baosong Yang*

Also published as: Baosong Yang


2024

pdf bib
mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval
Xin Zhang | Yanzhao Zhang | Dingkun Long | Wen Xie | Ziqi Dai | Jialong Tang | Huan Lin | Baosong Yang | Pengjun Xie | Fei Huang | Meishan Zhang | Wenjie Li | Min Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

We present systematic efforts in building long-context multilingual text representation model (TRM) and reranker from scratch for text retrieval. We first introduce a text encoder (base size) enhanced with RoPE and unpadding, pre-trained in a native 8192-token context (longer than 512 of previous multilingual encoders). Then we construct a hybrid TRM and a cross-encoder reranker by contrastive learning. Evaluations show that our text encoder outperforms the same-sized previous state-of-the-art XLM-R. Meanwhile, our TRM and reranker match the performance of large-sized state-of-the-art BGE-M3 models and achieve better results on long-context retrieval benchmarks. Further analysis demonstrate that our proposed models exhibit higher efficiency during both training and inference. We believe their efficiency and effectiveness could benefit various researches and industrial applications.

pdf bib
Meta-Reasoning: Semantics-Symbol Deconstruction for Large Language Models
Yiming Wang | Zhuosheng Zhang | Pei Zhang | Baosong Yang | Rui Wang
Findings of the Association for Computational Linguistics: ACL 2024

Neural-symbolic methods have demonstrated efficiency in enhancing the reasoning abilities of large language models (LLMs). However, existing methods mainly rely on syntactically mapping natural languages to complete formal languages like Python and SQL. Those methods require that reasoning tasks be convertible into programs, which cater to the computer execution mindset and deviate from human reasoning habits. To broaden symbolic methods’ applicability and adaptability in the real world, we propose Meta-Reasoning from a linguistic perspective. This method empowers LLMs to deconstruct reasoning-independent semantic information into generic symbolic representations, thereby efficiently capturing more generalized reasoning knowledge. We conduct extensive experiments on more than ten datasets encompassing conventional reasoning tasks like arithmetic, symbolic, and logical reasoning, and the more complex interactive reasoning tasks like theory-of-mind reasoning. Experimental results demonstrate that Meta-Reasoning significantly enhances in-context reasoning accuracy, learning efficiency, out-of-domain generalization, and output stability compared to the Chain-of-Thought technique.

pdf bib
Efficient k-Nearest-Neighbor Machine Translation with Dynamic Retrieval
Yan Gao | Zhiwei Cao | Zhongjian Miao | Baosong Yang | Shiyu Liu | Min Zhang | Jinsong Su
Findings of the Association for Computational Linguistics: ACL 2024

To achieve non-parametric NMT domain adaptation, k-Nearest-Neighbor Machine Translation (kNN-MT) constructs an external datastore to store domain-specific translation knowledge, which derives a kNN distribution to interpolate the prediction distribution of the NMT model via a linear interpolation coefficient 𝜆. Despite its success, kNN retrieval at each timestep leads to substantial time overhead. To address this issue, dominant studies resort to kNN-MT with adaptive retrieval (kNN-MT-AR), which dynamically estimates 𝜆 and skips kNN retrieval if 𝜆 is less than a fixed threshold. Unfortunately, kNN-MT-AR does not yield satisfactory results. In this paper, we first conduct a preliminary study to reveal two key limitations of kNN-MT-AR: 1) the optimization gap leads to inaccurate estimation of 𝜆 for determining kNN retrieval skipping, and 2) using a fixed threshold fails to accommodate the dynamic demands for kNN retrieval at different timesteps. To mitigate these limitations, we then propose kNN-MT with dynamic retrieval (kNN-MT-DR) that significantly extends vanilla kNN-MT in two aspects. Firstly, we equip kNN-MT with a MLP-based classifier for determining whether to skip kNN retrieval at each timestep. Particularly, we explore several carefully-designed scalar features to fully exert the potential of the classifier. Secondly, we propose a timestep-aware threshold adjustment method to dynamically generate the threshold, which further improves the efficiency of our model. Experimental results on the widely-used datasets demonstrate the effectiveness and generality of our model.

pdf bib
AnyTrans: Translate AnyText in the Image with Large Scale Models
Zhipeng Qian | Pei Zhang | Baosong Yang | Kai Fan | Yiwei Ma | Derek F. Wong | Xiaoshuai Sun | Rongrong Ji
Findings of the Association for Computational Linguistics: EMNLP 2024

This paper introduces AnyText, an all-encompassing framework for the task–In-Image Machine Translation (IIMT), which includes multilingual text translation and text fusion within images. Our framework leverages the strengths of large-scale models, such as Large Language Models (LLMs) and text-guided diffusion models, to incorporate contextual cues from both textual and visual elements during translation. The few-shot learning capability of LLMs allows for the translation of fragmented texts by considering the overall context. Meanwhile, diffusion models’ advanced inpainting and editing abilities make it possible to fuse translated text seamlessly into the original image while preserving its style and realism. Our framework can be constructed entirely using open-source models and requires no training, making it highly accessible and easily expandable. To encourage advancement in the IIMT task, we have meticulously compiled a test dataset called MTIT6, which consists of multilingual text image translation data from six language pairs.

pdf bib
Large Language Model for Multi-Domain Translation: Benchmarking and Domain CoT Fine-tuning
Tianxiang Hu | Pei Zhang | Baosong Yang | Jun Xie | Derek F. Wong | Rui Wang
Findings of the Association for Computational Linguistics: EMNLP 2024

Achieving consistent high-quality machine translation (MT) across diverse domains remains a significant challenge, primarily due to the limited and imbalanced parallel training data available in various domains. While large language models (LLMs) have demonstrated impressive general understanding and generation abilities, their potential in multi-domain MT is under-explored. We establish a comprehensive benchmark for multi-domain translation, featuring 25 German⇔English and 22 Chinese⇔English test sets respectively covering 15 domains. Our evaluation of prominent LLMs reveals a discernible performance gap against traditional MT systems, highlighting domain overfitting and catastrophic forgetting issues after fine-tuning on domain-limited corpora. To mitigate this, we propose a domain Chain of Thought (CoT) fine-tuning technique that utilizes the intrinsic multi-domain intelligence of LLMs to improve translation performance. This method inspires the LLM to perceive domain information from the source text, which then serves as a helpful hint to guide the translation process. Despite being trained on a small dataset of four domains, our CoT fine-tune approach achieves notable enhancements in translation accuracy and domain robustness than traditional fine-tuning, as evidenced by an average 1.53 BLEU score increase in over 20 German→English distinct out-of-domain tests.

pdf bib
Rethinking the Exploitation of Monolingual Data for Low-Resource Neural Machine Translation
Jianhui Pang | Baosong Yang* | Derek Fai Wong* | Yu Wan | Dayiheng Liu | Lidia Sam Chao | Jun Xie
Computational Linguistics, Volume 50, Issue 1 - March 2024

The utilization of monolingual data has been shown to be a promising strategy for addressing low-resource machine translation problems. Previous studies have demonstrated the effectiveness of techniques such as back-translation and self-supervised objectives, including masked language modeling, causal language modeling, and denoise autoencoding, in improving the performance of machine translation models. However, the manner in which these methods contribute to the success of machine translation tasks and how they can be effectively combined remains an under-researched area. In this study, we carry out a systematic investigation of the effects of these techniques on linguistic properties through the use of probing tasks, including source language comprehension, bilingual word alignment, and translation fluency. We further evaluate the impact of pre-training, back-translation, and multi-task learning on bitexts of varying sizes. Our findings inform the design of more effective pipelines for leveraging monolingual data in extremely low-resource and low-resource machine translation tasks. Experiment results show consistent performance gains in seven translation directions, which provide further support for our conclusions and understanding of the role of monolingual data in machine translation.

pdf bib
SJTU System Description for the WMT24 Low-Resource Languages of Spain Task
Tianxiang Hu | Haoxiang Sun | Ruize Gao | Jialong Tang | Pei Zhang | Baosong Yang | Rui Wang
Proceedings of the Ninth Conference on Machine Translation

We participate in the translation task on Spanish to Aragonese, Spanish to Aranese and Spanish to Asturian. Initially, we conduct preliminary experiments to assess the basic translation capabilities of various models and evaluate the impact of fine-tuning with different data types. We then choose to fine-tune the Qwen2-0.5B model using a forward synthesized pseudo-corpus from the Apertium translation system to replicate its fundamental performance. Building on this distillation model, we explore three optimization strategies across the three language directions: (1) Assembling the provided FLORES+ dev sets into a 5-shot format translation training dataset and performing few-shot fine-tuning to enhance model performance. (2) Utilizing the FLORES+ dev sets as training data and applying the Contrastive Preference Optimization (CPO) strategy for further refinement. (3) Retrieving the 20 most similar translation examples from the FLORES+ dev sets using the BM25 algorithm and performing 20-shot translations with the Claude 3.5-sonnet model. After evaluating these strategies, we select the best-performing approach for each language pair as our submission result.

pdf bib
Final Submission of SJTULoveFiction to Literary Task
Haoxiang Sun | Tianxiang Hu | Ruize Gao | Jialong Tang | Pei Zhang | Baosong Yang | Rui Wang
Proceedings of the Ninth Conference on Machine Translation

This paper describes Shanghai Jiao Tong University (SJTU LoveFiction) Discourse-Level Literary Translation systems for the WMT24shared task. We participate in the literary translation task on Chinese → English, Chinese →German and Chinese → Russian with uncon-strained tack.Check our paper for detail.

pdf bib
MoNMT: Modularly Leveraging Monolingual and Bilingual Knowledge for Neural Machine Translation
Jianhui Pang | Baosong Yang | Derek F. Wong | Dayiheng Liu | Xiangpeng Wei | Jun Xie | Lidia S. Chao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The effective use of monolingual and bilingual knowledge represents a critical challenge within the neural machine translation (NMT) community. In this paper, we propose a modular strategy that facilitates the cooperation of these two types of knowledge in translation tasks, while avoiding the issue of catastrophic forgetting and exhibiting superior model generalization and robustness. Our model is comprised of three functionally independent modules: an encoding module, a decoding module, and a transferring module. The former two acquire large-scale monolingual knowledge via self-supervised learning, while the latter is trained on parallel data and responsible for transferring latent features between the encoding and decoding modules. Extensive experiments in multi-domain translation tasks indicate our model yields remarkable performance, with up to 7 BLEU improvements in out-of-domain tests over the conventional pretrain-and-finetune approach. Our codes are available at https://github.com/NLP2CT/MoNMT.

2023

pdf bib
Tailor: A Soft-Prompt-Based Approach to Attribute-Based Controlled Text Generation
Kexin Yang | Dayiheng Liu | Wenqiang Lei | Baosong Yang | Mingfeng Xue | Boxing Chen | Jun Xie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Attribute-based Controlled Text Generation (CTG) refers to generating sentences that satisfy desirable attributes (e.g., emotions and topics). Existing work usually utilize fine-tuning or resort to extra attribute classifiers, yet suffer from increases in storage and inference time. To address these concerns, we explore attribute-based CTG in a parameter-efficient manner. In short, the proposed Tailor represents each attribute as a pre-trained continuous vector i.e., single-attribute prompt), which guides the generation of a fixed pre-trained language model (PLM) to satisfy a pre-specified attribute. These prompts can be simply concatenated as a whole for multi-attribute CTG without any re-training. Nevertheless, this may raise problems of fluency downgrading and position sensitivity. To solve this, Tailor provides two solutions to enhance the combination. The former contains a multi-attribute prompt mask and a re-indexing position sequence to bridge the gap between the training (one single-attribute prompt for each task) and the testing stage (concatenating two prompts). The latter introduces a trainable prompt connector to further enhance the combinations. Experiments demonstrate that, only requiring 0.08% extra training parameters of the GPT-2, Tailor can achieve effective and general improvements on eleven attribute-specific generation tasks.

pdf bib
Fantastic Expressions and Where to Find Them: Chinese Simile Generation with Multiple Constraints
Kexin Yang | Dayiheng Liu | Wenqiang Lei | Baosong Yang | Xiangpeng Wei | Zhengyuan Liu | Jun Xie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Similes occur in the creative context of describing a concept (i.e., tenor) by making a literally false yet figuratively meaningful comparison to another (i.e., vehicle). Previous efforts form simile generation as a context-free generation task, focusing on simile-style transfer or writing a simile from a given prefix. However, generated texts under such settings might be undesirable, such as hardly meeting the simile definition (e.g., missing vehicle) or difficult to address certain preferences of content as humans wish (e.g., describe the color of apples through the simile). We believe that a simile could be more qualified and user-oriented if incorporated with pre-specified constraints. To this end, we introduce controllable simile generation (CSG), a new task that requires the model to generate a simile with multiple simile elements, e.g., context and vehicle. To facilitate this task, we present GraCe, including 61.3k simile-element annotated Chinese similes. Based on it, we propose a CSG model Similor to benchmark this task, including a vehicle retrieval module Scorer to obtain the explicable comparison for a given tenor in the vehicle-unknown situation. Both statistical and experimental analyses show that GraCe is of high quality beyond all other Chinese simile datasets, in terms of the number (8 vs. 3) of annotation elements, Is-Simile accuracy (98.9% vs. 78.7%), and increasing model-performance gains for both uncontrollable and controllable simile generation. Meanwhile, Similor can serve as a strong baseline for CSG, especially with Scorer, which beats model-based retrieval methods without any re-training.

pdf bib
Bridging the Domain Gaps in Context Representations for k-Nearest Neighbor Neural Machine Translation
Zhiwei Cao | Baosong Yang | Huan Lin | Suhang Wu | Xiangpeng Wei | Dayiheng Liu | Jun Xie | Min Zhang | Jinsong Su
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

k-Nearest neighbor machine translation (kNN-MT) has attracted increasing attention due to its ability to non-parametrically adapt to new translation domains. By using an upstream NMT model to traverse the downstream training corpus, it is equipped with a datastore containing vectorized key-value pairs, which are retrieved during inference to benefit translation.However, there often exists a significant gap between upstream and downstream domains, which hurts the datastore retrieval and the final translation quality.To deal with this issue, we propose a novel approach to boost the datastore retrieval of kNN-MT by reconstructing the original datastore.Concretely, we design a reviser to revise the key representations, making them better fit for the downstream domain. The reviser is trained using the collected semantically-related key-queries pairs, and optimized by two proposed losses: one is the key-queries semantic distance ensuring each revised key representation is semantically related to its corresponding queries, and the other is an L2-norm loss encouraging revised key representations to effectively retain the knowledge learned by the upstream NMT model. Extensive experiments on domain adaptation tasks demonstrate that our method can effectively boost the datastore retrieval and translation quality of kNN-MT.Our code is available at https://github.com/DeepLearnXMU/Revised-knn-mt.

pdf bib
Dynamic Voting for Efficient Reasoning in Large Language Models
Mingfeng Xue | Dayiheng Liu | Wenqiang Lei | Xingzhang Ren | Baosong Yang | Jun Xie | Yidan Zhang | Dezhong Peng | Jiancheng Lv
Findings of the Association for Computational Linguistics: EMNLP 2023

Multi-path voting methods like Self-consistency have been used to mitigate reasoning errors in large language models caused by factual errors and illusion generation. However, these methods require excessive computing resources as they generate numerous reasoning paths for each problem. And our experiments show that on the arithmetic reasoning task, SVAMP, half of the problems fail to obtain noticeable accuracy gains when voting with more than three paths. In this paper, we propose a novel multi-path voting technique called Dynamic Voting, which effectively reduces the number of reasoning paths during multi-path voting while preserving accuracies by applying early exiting for problems that large language models can confidently solve. Experimental evaluations on arithmetic, commonsense, and symbolic reasoning tasks under few-shot and zero-shot settings demonstrate that Dynamic Voting achieves comparable accuracies employing significantly fewer reasoning paths. Notably, one of our Dynamic Voting strategies outperforms Self-consistency using only 24.7% of the number of paths on the LetterConcat task in the few-shot setting. Furthermore, Dynamic Voting showcases strong robustness in threshold selection. It also demonstrates excellent generalizability when combined with other voting techniques, different models, and diverse prompts.

pdf bib
MMNMT: Modularizing Multilingual Neural Machine Translation with Flexibly Assembled MoE and Dense Blocks
Shangjie Li | Xiangpeng Wei | Shaolin Zhu | Jun Xie | Baosong Yang | Deyi Xiong
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Mixture-of-Experts (MoE) based sparse architectures can significantly increase model capacity with sublinear computational overhead, which are hence widely used in massively multilingual neural machine translation (MNMT). However, they are prone to overfitting on low-resource language translation. In this paper, we propose a modularized MNMT framework that is able to flexibly assemble dense and MoE-based sparse modules to achieve the best of both worlds. The training strategy of the modularized MNMT framework consists of three stages: (1) Pre-training basic MNMT models with different training objectives or model structures, (2) Initializing modules of the framework with pre-trained couterparts (e.g., encoder, decoder and embedding layers) from the basic models and (3) Fine-tuning the modularized MNMT framework to fit modules from different models together. We pre-train three basic MNMT models from scratch: a dense model, an MoE-based sparse model and a new MoE model, termed as MoE-LGR that explores multiple Language-Group-specifc Routers to incorporate language group knowledge into MNMT. The strengths of these pre-trained models are either on low-resource language translation, high-resource language translation or zero-shot translation. Our modularized MNMT framework attempts to incorporate these advantages into a single model with reasonable initialization and fine-tuning. Experiments on widely-used benchmark datasets demonstrate that the proposed modularized MNMT framwork substantially outperforms both MoE and dense models on high- and low-resource language translation as well as zero-shot translation. Our framework facilitates the combination of different methods with their own strengths and recycling off-the-shelf models for multilingual neural machine translation. Codes are available at https://github.com/lishangjie1/MMNMT.

pdf bib
Unifying Discrete and Continuous Representations for Unsupervised Paraphrase Generation
Mingfeng Xue | Dayiheng Liu | Wenqiang Lei | Jie Fu | Jian Lan | Mei Li | Baosong Yang | Jun Xie | Yidan Zhang | Dezhong Peng | Jiancheng Lv
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Unsupervised paraphrase generation is a challenging task that benefits a variety of downstream NLP applications. Current unsupervised methods for paraphrase generation typically employ round-trip translation or denoising, which require translation corpus and result in paraphrases overly similar to the original sentences in surface structure. Most of these methods lack explicit control over the similarity between the original and generated sentences, and the entities are also less correctly kept. To obviate the reliance on translation data and prompt greater variations in surface structure, we propose a self-supervised pseudo-data construction method that generates diverse pseudo-paraphrases in distinct surface structures for a given sentence. To control the similarity and generate accurate entities, we propose an unsupervised paraphrasing model that encodes the sentence meaning and the entities with discrete and continuous variables, respectively. The similarity can be controlled by sampling discrete variables and the entities are kept substantially accurate due to the specific modeling of entities using continuous variables. Experimental results on two benchmark datasets demonstrate the advantages of our pseudo-data construction method compared to round-trip translation, and the superiority of our paraphrasing model over the state-of-the-art unsupervised methods.

2022

pdf bib
Should We Rely on Entity Mentions for Relation Extraction? Debiasing Relation Extraction with Counterfactual Analysis
Yiwei Wang | Muhao Chen | Wenxuan Zhou | Yujun Cai | Yuxuan Liang | Dayiheng Liu | Baosong Yang | Juncheng Liu | Bryan Hooi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent literature focuses on utilizing the entity information in the sentence-level relation extraction (RE), but this risks leaking superficial and spurious clues of relations. As a result, RE still suffers from unintended entity bias, i.e., the spurious correlation between entity mentions (names) and relations. Entity bias can mislead the RE models to extract the relations that do not exist in the text. To combat this issue, some previous work masks the entity mentions to prevent the RE models from over-fitting entity mentions. However, this strategy degrades the RE performance because it loses the semantic information of entities. In this paper, we propose the CoRE (Counterfactual Analysis based Relation Extraction) debiasing method that guides the RE models to focus on the main effects of textual context without losing the entity information. We first construct a causal graph for RE, which models the dependencies between variables in RE models. Then, we propose to conduct counterfactual analysis on our causal graph to distill and mitigate the entity bias, that captures the causal effects of specific entity mentions in each instance. Note that our CoRE method is model-agnostic to debias existing RE systems during inference without changing their training processes. Extensive experimental results demonstrate that our CoRE yields significant gains on both effectiveness and generalization for RE. The source code is provided at: https://github.com/vanoracai/CoRE.

pdf bib
UniTE: Unified Translation Evaluation
Yu Wan | Dayiheng Liu | Baosong Yang | Haibo Zhang | Boxing Chen | Derek Wong | Lidia Chao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Translation quality evaluation plays a crucial role in machine translation. According to the input format, it is mainly separated into three tasks, i.e., reference-only, source-only and source-reference-combined. Recent methods, despite their promising results, are specifically designed and optimized on one of them. This limits the convenience of these methods, and overlooks the commonalities among tasks. In this paper, we propose , which is the first unified framework engaged with abilities to handle all three evaluation tasks. Concretely, we propose monotonic regional attention to control the interaction among input segments, and unified pretraining to better adapt multi-task training. We testify our framework on WMT 2019 Metrics and WMT 2020 Quality Estimation benchmarks. Extensive analyses show that our single model can universally surpass various state-of-the-art or winner methods across tasks.Both source code and associated models are available at https://github.com/NLP2CT/UniTE.

pdf bib
Competency-Aware Neural Machine Translation: Can Machine Translation Know its Own Translation Quality?
Pei Zhang | Baosong Yang | Hao-Ran Wei | Dayiheng Liu | Kai Fan | Luo Si | Jun Xie
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Neural machine translation (NMT) is often criticized for failures that happenwithout awareness. The lack of competency awareness makes NMT untrustworthy. This is in sharp contrast to human translators who give feedback or conduct further investigations whenever they are in doubt about predictions. To fill this gap, we propose a novel competency-aware NMT by extending conventional NMT with a self-estimator, offering abilities to translate a source sentence and estimate its competency.The self-estimator encodes the information of the decoding procedure and then examines whether it can reconstruct the original semantics of the source sentence. Experimental results on four translation tasks demonstrate that the proposed method not only carries out translation tasks intact but also delivers outstanding performance on quality estimation.Without depending on any reference or annotated data typically required by state-of-the-art metric and quality estimation methods, our model yields an even higher correlation with human quality judgments than a variety of aforementioned methods, such as BLEURT, COMET, and BERTScore. Quantitative and qualitative analyses show better robustness of competency awareness in our model.

pdf bib
WR-One2Set: Towards Well-Calibrated Keyphrase Generation
Binbin Xie | Xiangpeng Wei | Baosong Yang | Huan Lin | Jun Xie | Xiaoli Wang | Min Zhang | Jinsong Su
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Keyphrase generation aims to automatically generate short phrases summarizing an input document. The recently emerged ONE2SET paradigm (Ye et al., 2021) generates keyphrases as a set and has achieved competitive performance. Nevertheless, we observe serious calibration errors outputted by ONE2SET, especially in the over-estimation of ∅ token (means “no corresponding keyphrase”). In this paper, we deeply analyze this limitation and identify two main reasons behind: 1) the parallel generation has to introduce excessive ∅ as padding tokens into training instances; and 2) the training mechanism assigning target to each slot is unstable and further aggravates the ∅ token over-estimation. To make the model well-calibrated, we propose WR-ONE2SET which extends ONE2SET with an adaptive instance-level cost Weighting strategy and a target Re-assignment mechanism. The former dynamically penalizes the over-estimated slots for different instances thus smoothing the uneven training distribution. The latter refines the original inappropriate assignment and reduces the supervisory signals of over-estimated slots. Experimental results on commonly-used datasets demonstrate the effectiveness and generality of our proposed paradigm.

pdf bib
Unsupervised Preference-Aware Language Identification
Xingzhang Ren | Baosong Yang | Dayiheng Liu | Haibo Zhang | Xiaoyu Lv | Liang Yao | Jun Xie
Findings of the Association for Computational Linguistics: ACL 2022

Recognizing the language of ambiguous texts has become a main challenge in language identification (LID). When using multilingual applications, users have their own language preferences, which can be regarded as external knowledge for LID. Nevertheless, current studies do not consider the inter-personal variations due to the lack of user annotated training data. To fill this gap, we introduce preference-aware LID and propose a novel unsupervised learning strategy. Concretely, we construct pseudo training set for each user by extracting training samples from a standard LID corpus according to his/her historical language distribution. Besides, we contribute the first user labeled LID test set called “U-LID”. Experimental results reveal that our model can incarnate user traits and significantly outperforms existing LID systems on handling ambiguous texts. Our code and benchmark have been released.

pdf bib
Attention Mechanism with Energy-Friendly Operations
Yu Wan | Baosong Yang | Dayiheng Liu | Rong Xiao | Derek Wong | Haibo Zhang | Boxing Chen | Lidia Chao
Findings of the Association for Computational Linguistics: ACL 2022

Attention mechanism has become the dominant module in natural language processing models. It is computationally intensive and depends on massive power-hungry multiplications. In this paper, we rethink variants of attention mechanism from the energy consumption aspects. After reaching the conclusion that the energy costs of several energy-friendly operations are far less than their multiplication counterparts, we build a novel attention model by replacing multiplications with either selective operations or additions. Empirical results on three machine translation tasks demonstrate that the proposed model, against the vanilla one, achieves competitable accuracy while saving 99% and 66% energy during alignment calculation and the whole attention procedure. Our code will be released upon the acceptance.

pdf bib
GCPG: A General Framework for Controllable Paraphrase Generation
Kexin Yang | Dayiheng Liu | Wenqiang Lei | Baosong Yang | Haibo Zhang | Xue Zhao | Wenqing Yao | Boxing Chen
Findings of the Association for Computational Linguistics: ACL 2022

Controllable paraphrase generation (CPG) incorporates various external conditions to obtain desirable paraphrases. However, existing works only highlight a special condition under two indispensable aspects of CPG (i.e., lexically and syntactically CPG) individually, lacking a unified circumstance to explore and analyze their effectiveness. In this paper, we propose a general controllable paraphrase generation framework (GCPG), which represents both lexical and syntactical conditions as text sequences and uniformly processes them in an encoder-decoder paradigm. Under GCPG, we reconstruct commonly adopted lexical condition (i.e., Keywords) and syntactical conditions (i.e., Part-Of-Speech sequence, Constituent Tree, Masked Template and Sentential Exemplar) and study the combination of the two types. In particular, for Sentential Exemplar condition, we propose a novel exemplar construction method — Syntax-Similarity based Exemplar (SSE). SSE retrieves a syntactically similar but lexically different sentence as the exemplar for each target sentence, avoiding exemplar-side words copying problem. Extensive experiments demonstrate that GCPG with SSE achieves state-of-the-art performance on two popular benchmarks. In addition, the combination of lexical and syntactical conditions shows the significant controllable ability of paraphrase generation, and these empirical results could provide novel insight to user-oriented paraphrasing.

pdf bib
Dangling-Aware Entity Alignment with Mixed High-Order Proximities
Juncheng Liu | Zequn Sun | Bryan Hooi | Yiwei Wang | Dayiheng Liu | Baosong Yang | Xiaokui Xiao | Muhao Chen
Findings of the Association for Computational Linguistics: NAACL 2022

We study dangling-aware entity alignment in knowledge graphs (KGs), which is an underexplored but important problem. As different KGs are naturally constructed by different sets of entities, a KG commonly contains some dangling entities that cannot find counterparts in other KGs. Therefore, dangling-aware entity alignment is more realistic than the conventional entity alignment where prior studies simply ignore dangling entities. We propose a framework using mixed high-order proximities on dangling-aware entity alignment. Our framework utilizes both the local high-order proximity in a nearest neighbor subgraph and the global high-order proximity in an embedding space for both dangling detection and entity alignment. Extensive experiments with two evaluation settings shows that our method more precisely detects dangling entities, and better aligns matchable entities. Further investigations demonstrate that our framework can mitigate the hubness problem on dangling-aware entity alignment.

pdf bib
Bridging the Gap between Training and Inference: Multi-Candidate Optimization for Diverse Neural Machine Translation
Huan Lin | Baosong Yang | Liang Yao | Dayiheng Liu | Haibo Zhang | Jun Xie | Min Zhang | Jinsong Su
Findings of the Association for Computational Linguistics: NAACL 2022

Diverse NMT aims at generating multiple diverse yet faithful translations given a source sentence. In this paper, we investigate a common shortcoming in existing diverse NMT studies: the model is usually trained with single reference, while expected to generate multiple candidate translations in inference. The discrepancy between training and inference enlarges the confidence variance and quality gap among candidate translations and thus hinders model performance. To deal with this defect, we propose a multi-candidate optimization framework for diverse NMT. Specifically, we define assessments to score the diversity and the quality of candidate translations during training, and optimize the diverse NMT model with two strategies based on reinforcement learning, namely hard constrained training and soft constrained training. We conduct experiments on NIST Chinese-English and WMT14 English-German translation tasks. The results illustrate that our framework is transparent to basic diverse NMT models, and universally makes better trade-off between diversity and quality. Our source codeis available at https://github.com/DeepLearnXMU/MultiCanOptim.

pdf bib
Challenges of Neural Machine Translation for Short Texts
Yu Wan | Baosong Yang | Derek Fai Wong | Lidia Sam Chao | Liang Yao | Haibo Zhang | Boxing Chen
Computational Linguistics, Volume 48, Issue 2 - June 2022

Short texts (STs) present in a variety of scenarios, including query, dialog, and entity names. Most of the exciting studies in neural machine translation (NMT) are focused on tackling open problems concerning long sentences rather than short ones. The intuition behind is that, with respect to human learning and processing, short sequences are generally regarded as easy examples. In this article, we first dispel this speculation via conducting preliminary experiments, showing that the conventional state-of-the-art NMT approach, namely, Transformer (Vaswani et al. 2017), still suffers from over-translation and mistranslation errors over STs. After empirically investigating the rationale behind this, we summarize two challenges in NMT for STs associated with translation error types above, respectively: (1) the imbalanced length distribution in training set intensifies model inference calibration over STs, leading to more over-translation cases on STs; and (2) the lack of contextual information forces NMT to have higher data uncertainty on short sentences, and thus NMT model is troubled by considerable mistranslation errors. Some existing approaches, like balancing data distribution for training (e.g., data upsampling) and complementing contextual information (e.g., introducing translation memory) can alleviate the translation issues in NMT for STs. We encourage researchers to investigate other challenges in NMT for STs, thus reducing ST translation errors and enhancing translation quality.

pdf bib
Effective Approaches to Neural Query Language Identification
Xingzhang Ren | Baosong Yang | Dayiheng Liu | Haibo Zhang | Xiaoyu Lv | Liang Yao | Jun Xie
Computational Linguistics, Volume 48, Issue 4 - December 2022

Query language identification (Q-LID) plays a crucial role in a cross-lingual search engine. There exist two main challenges in Q-LID: (1) insufficient contextual information in queries for disambiguation; and (2) the lack of query-style training examples for low-resource languages. In this article, we propose a neural Q-LID model by alleviating the above problems from both model architecture and data augmentation perspectives. Concretely, we build our model upon the advanced Transformer model. In order to enhance the discrimination of queries, a variety of external features (e.g., character, word, as well as script) are fed into the model and fused by a multi-scale attention mechanism. Moreover, to remedy the low resource challenge in this task, a novel machine translation–based strategy is proposed to automatically generate synthetic query-style data for low-resource languages. We contribute the first Q-LID test set called QID-21, which consists of search queries in 21 languages. Experimental results reveal that our model yields better classification accuracy than strong baselines and existing LID systems on both query and traditional LID tasks.1

pdf bib
Alibaba-Translate China’s Submission for WMT2022 Metrics Shared Task
Yu Wan | Keqin Bao | Dayiheng Liu | Baosong Yang | Derek F. Wong | Lidia S. Chao | Wenqiang Lei | Jun Xie
Proceedings of the Seventh Conference on Machine Translation (WMT)

In this report, we present our submission to the WMT 2022 Metrics Shared Task. We build our system based on the core idea of UNITE (Unified Translation Evaluation), which unifies source-only, reference-only, and source- reference-combined evaluation scenarios into one single model. Specifically, during the model pre-training phase, we first apply the pseudo-labeled data examples to continuously pre-train UNITE. Notably, to reduce the gap between pre-training and fine-tuning, we use data cropping and a ranking-based score normalization strategy. During the fine-tuning phase, we use both Direct Assessment (DA) and Multidimensional Quality Metrics (MQM) data from past years’ WMT competitions. Specially, we collect the results from models with different pre-trained language model backbones, and use different ensembling strategies for involved translation directions.

pdf bib
Alibaba-Translate China’s Submission for WMT 2022 Quality Estimation Shared Task
Keqin Bao | Yu Wan | Dayiheng Liu | Baosong Yang | Wenqiang Lei | Xiangnan He | Derek F. Wong | Jun Xie
Proceedings of the Seventh Conference on Machine Translation (WMT)

In this paper, we present our submission to the sentence-level MQM benchmark at Quality Estimation Shared Task, named UniTE (Unified Translation Evaluation). Specifically, our systems employ the framework of UniTE, which combined three types of input formats during training with a pre-trained language model. First, we apply the pseudo-labeled data examples for the continuously pre-training phase. Notably, to reduce the gap between pre-training and fine-tuning, we use data cropping and a ranking-based score normalization strategy. For the fine-tuning phase, we use both Direct Assessment (DA) and Multidimensional Quality Metrics (MQM) data from past years’ WMT competitions. Finally, we collect the source-only evaluation results, and ensemble the predictions generated by two UniTE models, whose backbones are XLM-R and infoXLM, respectively. Results show that our models reach 1st overall ranking in the Multilingual and English-Russian settings, and 2nd overall ranking in English-German and Chinese-English settings, showing relatively strong performances in this year’s quality estimation competition.

2021

pdf bib
Towards User-Driven Neural Machine Translation
Huan Lin | Liang Yao | Baosong Yang | Dayiheng Liu | Haibo Zhang | Weihua Luo | Degen Huang | Jinsong Su
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A good translation should not only translate the original content semantically, but also incarnate personal traits of the original text. For a real-world neural machine translation (NMT) system, these user traits (e.g., topic preference, stylistic characteristics and expression habits) can be preserved in user behavior (e.g., historical inputs). However, current NMT systems marginally consider the user behavior due to: 1) the difficulty of modeling user portraits in zero-shot scenarios, and 2) the lack of user-behavior annotated parallel dataset. To fill this gap, we introduce a novel framework called user-driven NMT. Specifically, a cache-based module and a user-driven contrastive learning method are proposed to offer NMT the ability to capture potential user traits from their historical inputs under a zero-shot learning fashion. Furthermore, we contribute the first Chinese-English parallel corpus annotated with user behavior called UDT-Corpus. Experimental results confirm that the proposed user-driven NMT can generate user-specific translations.

pdf bib
Bridging Subword Gaps in Pretrain-Finetune Paradigm for Natural Language Generation
Xin Liu | Baosong Yang | Dayiheng Liu | Haibo Zhang | Weihua Luo | Min Zhang | Haiying Zhang | Jinsong Su
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A well-known limitation in pretrain-finetune paradigm lies in its inflexibility caused by the one-size-fits-all vocabulary. This potentially weakens the effect when applying pretrained models into natural language generation (NLG) tasks, especially for the subword distributions between upstream and downstream tasks with significant discrepancy. Towards approaching this problem, we extend the vanilla pretrain-finetune pipeline with an extra embedding transfer step. Specifically, a plug-and-play embedding generator is introduced to produce the representation of any input token, according to pre-trained embeddings of its morphologically similar ones. Thus, embeddings of mismatch tokens in downstream tasks can also be efficiently initialized. We conduct experiments on a variety of NLG tasks under the pretrain-finetune fashion. Experimental results and extensive analyses show that the proposed strategy offers us opportunities to feel free to transfer the vocabulary, leading to more efficient and better performed downstream NLG models.

pdf bib
Multi-Hop Transformer for Document-Level Machine Translation
Long Zhang | Tong Zhang | Haibo Zhang | Baosong Yang | Wei Ye | Shikun Zhang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Document-level neural machine translation (NMT) has proven to be of profound value for its effectiveness on capturing contextual information. Nevertheless, existing approaches 1) simply introduce the representations of context sentences without explicitly characterizing the inter-sentence reasoning process; and 2) feed ground-truth target contexts as extra inputs at the training time, thus facing the problem of exposure bias. We approach these problems with an inspiration from human behavior – human translators ordinarily emerge a translation draft in their mind and progressively revise it according to the reasoning in discourse. To this end, we propose a novel Multi-Hop Transformer (MHT) which offers NMT abilities to explicitly model the human-like draft-editing and reasoning process. Specifically, our model serves the sentence-level translation as a draft and properly refines its representations by attending to multiple antecedent sentences iteratively. Experiments on four widely used document translation tasks demonstrate that our method can significantly improve document-level translation performance and can tackle discourse phenomena, such as coreference error and the problem of polysemy.

pdf bib
RoBLEURT Submission for WMT2021 Metrics Task
Yu Wan | Dayiheng Liu | Baosong Yang | Tianchi Bi | Haibo Zhang | Boxing Chen | Weihua Luo | Derek F. Wong | Lidia S. Chao
Proceedings of the Sixth Conference on Machine Translation

In this paper, we present our submission to Shared Metrics Task: RoBLEURT (Robustly Optimizing the training of BLEURT). After investigating the recent advances of trainable metrics, we conclude several aspects of vital importance to obtain a well-performed metric model by: 1) jointly leveraging the advantages of source-included model and reference-only model, 2) continuously pre-training the model with massive synthetic data pairs, and 3) fine-tuning the model with data denoising strategy. Experimental results show that our model reaching state-of-the-art correlations with the WMT2020 human annotations upon 8 out of 10 to-English language pairs.

2020

pdf bib
Domain Transfer based Data Augmentation for Neural Query Translation
Liang Yao | Baosong Yang | Haibo Zhang | Boxing Chen | Weihua Luo
Proceedings of the 28th International Conference on Computational Linguistics

Query translation (QT) serves as a critical factor in successful cross-lingual information retrieval (CLIR). Due to the lack of parallel query samples, neural-based QT models are usually optimized with synthetic data which are derived from large-scale monolingual queries. Nevertheless, such kind of pseudo corpus is mostly produced by a general-domain translation model, making it be insufficient to guide the learning of QT model. In this paper, we extend the data augmentation with a domain transfer procedure, thus to revise synthetic candidates to search-aware examples. Specifically, the domain transfer model is built upon advanced Transformer, in which layer coordination and mixed attention are exploited to speed up the refining process and leverage parameters from a pre-trained cross-lingual language model. In order to examine the effectiveness of the proposed method, we collected French-to-English and Spanish-to-English QT test sets, each of which consists of 10,000 parallel query pairs with careful manual-checking. Qualitative and quantitative analyses reveal that our model significantly outperforms strong baselines and the related domain transfer methods on both translation quality and retrieval accuracy.

pdf bib
Uncertainty-Aware Curriculum Learning for Neural Machine Translation
Yikai Zhou | Baosong Yang | Derek F. Wong | Yu Wan | Lidia S. Chao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural machine translation (NMT) has proven to be facilitated by curriculum learning which presents examples in an easy-to-hard order at different training stages. The keys lie in the assessment of data difficulty and model competence. We propose uncertainty-aware curriculum learning, which is motivated by the intuition that: 1) the higher the uncertainty in a translation pair, the more complex and rarer the information it contains; and 2) the end of the decline in model uncertainty indicates the completeness of current training stage. Specifically, we serve cross-entropy of an example as its data difficulty and exploit the variance of distributions over the weights of the network to present the model uncertainty. Extensive experiments on various translation tasks reveal that our approach outperforms the strong baseline and related methods on both translation quality and convergence speed. Quantitative analyses reveal that the proposed strategy offers NMT the ability to automatically govern its learning schedule.

pdf bib
Self-Paced Learning for Neural Machine Translation
Yu Wan | Baosong Yang | Derek F. Wong | Yikai Zhou | Lidia S. Chao | Haibo Zhang | Boxing Chen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Recent studies have proven that the training of neural machine translation (NMT) can be facilitated by mimicking the learning process of humans. Nevertheless, achievements of such kind of curriculum learning rely on the quality of artificial schedule drawn up with the handcrafted features, e.g. sentence length or word rarity. We ameliorate this procedure with a more flexible manner by proposing self-paced learning, where NMT model is allowed to 1) automatically quantify the learning confidence over training examples; and 2) flexibly govern its learning via regulating the loss in each iteration step. Experimental results over multiple translation tasks demonstrate that the proposed model yields better performance than strong baselines and those models trained with human-designed curricula on both translation quality and convergence speed.

2019

pdf bib
Leveraging Local and Global Patterns for Self-Attention Networks
Mingzhou Xu | Derek F. Wong | Baosong Yang | Yue Zhang | Lidia S. Chao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Self-attention networks have received increasing research attention. By default, the hidden states of each word are hierarchically calculated by attending to all words in the sentence, which assembles global information. However, several studies pointed out that taking all signals into account may lead to overlooking neighboring information (e.g. phrase pattern). To address this argument, we propose a hybrid attention mechanism to dynamically leverage both of the local and global information. Specifically, our approach uses a gating scalar for integrating both sources of the information, which is also convenient for quantifying their contributions. Experiments on various neural machine translation tasks demonstrate the effectiveness of the proposed method. The extensive analyses verify that the two types of contexts are complementary to each other, and our method gives highly effective improvements in their integration.

pdf bib
Assessing the Ability of Self-Attention Networks to Learn Word Order
Baosong Yang | Longyue Wang | Derek F. Wong | Lidia S. Chao | Zhaopeng Tu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Self-attention networks (SAN) have attracted a lot of interests due to their high parallelization and strong performance on a variety of NLP tasks, e.g. machine translation. Due to the lack of recurrence structure such as recurrent neural networks (RNN), SAN is ascribed to be weak at learning positional information of words for sequence modeling. However, neither this speculation has been empirically confirmed, nor explanations for their strong performances on machine translation tasks when “lacking positional information” have been explored. To this end, we propose a novel word reordering detection task to quantify how well the word order information learned by SAN and RNN. Specifically, we randomly move one word to another position, and examine whether a trained model can detect both the original and inserted positions. Experimental results reveal that: 1) SAN trained on word reordering detection indeed has difficulty learning the positional information even with the position embedding; and 2) SAN trained on machine translation learns better positional information than its RNN counterpart, in which position embedding plays a critical role. Although recurrence structure make the model more universally-effective on learning word order, learning objectives matter more in the downstream tasks such as machine translation.

pdf bib
Modeling Recurrence for Transformer
Jie Hao | Xing Wang | Baosong Yang | Longyue Wang | Jinfeng Zhang | Zhaopeng Tu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Recently, the Transformer model that is based solely on attention mechanisms, has advanced the state-of-the-art on various machine translation tasks. However, recent studies reveal that the lack of recurrence modeling hinders its further improvement of translation capacity. In response to this problem, we propose to directly model recurrence for Transformer with an additional recurrence encoder. In addition to the standard recurrent neural network, we introduce a novel attentive recurrent network to leverage the strengths of both attention models and recurrent networks. Experimental results on the widely-used WMT14 English⇒German and WMT17 Chinese⇒English translation tasks demonstrate the effectiveness of the proposed approach. Our studies also reveal that the proposed model benefits from a short-cut that bridges the source and target sequences with a single recurrent layer, which outperforms its deep counterpart.

pdf bib
Information Aggregation for Multi-Head Attention with Routing-by-Agreement
Jian Li | Baosong Yang | Zi-Yi Dou | Xing Wang | Michael R. Lyu | Zhaopeng Tu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Multi-head attention is appealing for its ability to jointly extract different types of information from multiple representation subspaces. Concerning the information aggregation, a common practice is to use a concatenation followed by a linear transformation, which may not fully exploit the expressiveness of multi-head attention. In this work, we propose to improve the information aggregation for multi-head attention with a more powerful routing-by-agreement algorithm. Specifically, the routing algorithm iteratively updates the proportion of how much a part (i.e. the distinct information learned from a specific subspace) should be assigned to a whole (i.e. the final output representation), based on the agreement between parts and wholes. Experimental results on linguistic probing tasks and machine translation tasks prove the superiority of the advanced information aggregation over the standard linear transformation.

pdf bib
Convolutional Self-Attention Networks
Baosong Yang | Longyue Wang | Derek F. Wong | Lidia S. Chao | Zhaopeng Tu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Self-attention networks (SANs) have drawn increasing interest due to their high parallelization in computation and flexibility in modeling dependencies. SANs can be further enhanced with multi-head attention by allowing the model to attend to information from different representation subspaces. In this work, we propose novel convolutional self-attention networks, which offer SANs the abilities to 1) strengthen dependencies among neighboring elements, and 2) model the interaction between features extracted by multiple attention heads. Experimental results of machine translation on different language pairs and model settings show that our approach outperforms both the strong Transformer baseline and other existing models on enhancing the locality of SANs. Comparing with prior studies, the proposed model is parameter free in terms of introducing no more parameters.

2018

pdf bib
Multi-Head Attention with Disagreement Regularization
Jian Li | Zhaopeng Tu | Baosong Yang | Michael R. Lyu | Tong Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Multi-head attention is appealing for the ability to jointly attend to information from different representation subspaces at different positions. In this work, we introduce a disagreement regularization to explicitly encourage the diversity among multiple attention heads. Specifically, we propose three types of disagreement regularization, which respectively encourage the subspace, the attended positions, and the output representation associated with each attention head to be different from other heads. Experimental results on widely-used WMT14 English-German and WMT17 Chinese-English translation tasks demonstrate the effectiveness and universality of the proposed approach.

pdf bib
Modeling Localness for Self-Attention Networks
Baosong Yang | Zhaopeng Tu | Derek F. Wong | Fandong Meng | Lidia S. Chao | Tong Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Self-attention networks have proven to be of profound value for its strength of capturing global dependencies. In this work, we propose to model localness for self-attention networks, which enhances the ability of capturing useful local context. We cast localness modeling as a learnable Gaussian bias, which indicates the central and scope of the local region to be paid more attention. The bias is then incorporated into the original attention distribution to form a revised distribution. To maintain the strength of capturing long distance dependencies while enhance the ability of capturing short-range dependencies, we only apply localness modeling to lower layers of self-attention networks. Quantitative and qualitative analyses on Chinese-English and English-German translation tasks demonstrate the effectiveness and universality of the proposed approach.

2017

pdf bib
Towards Bidirectional Hierarchical Representations for Attention-based Neural Machine Translation
Baosong Yang | Derek F. Wong | Tong Xiao | Lidia S. Chao | Jingbo Zhu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

This paper proposes a hierarchical attentional neural translation model which focuses on enhancing source-side hierarchical representations by covering both local and global semantic information using a bidirectional tree-based encoder. To maximize the predictive likelihood of target words, a weighted variant of an attention mechanism is used to balance the attentive information between lexical and phrase vectors. Using a tree-based rare word encoding, the proposed model is extended to sub-word level to alleviate the out-of-vocabulary (OOV) problem. Empirical results reveal that the proposed model significantly outperforms sequence-to-sequence attention-based and tree-based neural translation models in English-Chinese translation tasks.

2015

pdf bib
Sampling-based Alignment and Hierarchical Sub-sentential Alignment in Chinese–Japanese Translation of Patents
Wei Yang | Zhongwen Zhao | Baosong Yang | Yves Lepage
Proceedings of the 2nd Workshop on Asian Translation (WAT2015)