Large language models (LLMs) have shown remarkable achievements across various language tasks. To enhance the performance of LLMs in scientific literature services, we developed the scientific literature LLM (SciLit-LLM) through pre-training and supervised fine-tuning on scientific literature, building upon the iFLYTEK Spark LLM. Furthermore, we present a knowledge service system Spark Research Assistant (SparkRA) based on our SciLit-LLM. SparkRA is accessible online and provides three primary functions: literature investigation, paper reading, and academic writing. As of July 30, 2024, SparkRA has garnered over 50,000 registered users, with a total usage count exceeding 1.3 million.
Nowadays, data augmentation through synthetic data has been widely used in the field of Grammatical Error Correction (GEC) to alleviate the problem of data scarcity. However, these synthetic data are mainly used in the pre-training phase rather than the data-limited fine tuning phase due to inconsistent error distribution and noisy labels. In this paper, we propose a synthetic data construction method based on contextual augmentation, which can ensure an efficient augmentation of the original data with a more consistent error distribution. Specifically, we combine rule-based substitution with model-based generation, using the generation model to generate a richer context for the extracted error patterns. Besides, we also propose a relabeling-based data cleaning method to mitigate the effects of noisy labels in synthetic data. Experiments on CoNLL14 and BEA19-Test show that our proposed augmentation method consistently and substantially outperforms strong baselines and achieves the state-of-the-art level with only a few synthetic data.
Over-correction is a critical problem in Chinese grammatical error correction (CGEC) task. Recent work using model ensemble methods based on voting can effectively mitigate over-correction and improve the precision of the GEC system. However, these methods still require the output of several GEC systems and inevitably lead to reduced error recall. In this light, we propose the LM-Combiner, a rewriting model that can directly modify the over-correction of GEC system outputs without a model ensemble. Specifically, we train the model on an over-correction dataset constructed through the proposed K-fold cross inference method, which allows it to directly generate filtered sentences by combining the original and the over-corrected text. In the inference stage, we directly take the original sentences and the output results of other systems as input and then obtain the filtered sentences through LM-Combiner. Experiments on the FCGEC dataset show that our proposed method effectively alleviates the over-correction of the original system (+18.2 Precision) while ensuring the error recall remains unchanged. Besides, we find that LM-Combiner still has a good rewriting performance even with small parameters and few training data, and thus can cost-effectively mitigate the over-correction of black-box GEC systems (e.g., ChatGPT).
The Chinese text correction (CTC) focuses on detecting and correcting Chinese spelling errors and grammatical errors. Most existing datasets of Chinese spelling check (CSC) and Chinese grammatical error correction (GEC) are focused on a single sentence written by Chinese-as-a-second-language (CSL) learners. We find that errors caused by native speakers differ significantly from those produced by non-native speakers. These differences make it inappropriate to use the existing test sets directly to evaluate text correction systems for native speakers. Some errors also require the cross-sentence information to be identified and corrected. In this paper, we propose a cross-sentence Chinese text correction dataset for native speakers. Concretely, we manually annotated 1,500 texts written by native speakers. The dataset consists of 30,811 sentences and more than 1,000,000 Chinese characters. It contains four types of errors: spelling errors, redundant words, missing words, and word ordering errors. We also test some state-of-the-art models on the dataset. The experimental results show that even the model with the best performance is 20 points lower than humans, which indicates that there is still much room for improvement. We hope that the new dataset can fill the gap in cross-sentence text correction for native Chinese speakers.
Multilingual pre-trained language models have shown impressive performance on cross-lingual tasks. It greatly facilitates the applications of natural language processing on low-resource languages. However, there are still some languages that the current multilingual models do not perform well on. In this paper, we propose CINO (Chinese Minority Pre-trained Language Model), a multilingual pre-trained language model for Chinese minority languages. It covers Standard Chinese, Yue Chinese, and six other ethnic minority languages. To evaluate the cross-lingual ability of the multilingual model on ethnic minority languages, we collect documents from Wikipedia and news websites, and construct two text classification datasets, WCM (Wiki-Chinese-Minority) and CMNews (Chinese-Minority-News). We show that CINO notably outperforms the baselines on various classification tasks. The CINO model and the datasets are publicly available at http://cino.hfl-rc.com.
Grammatical error diagnosis is an important task in natural language processing. This paper introduces our system at NLPTEA-2020 Task: Chinese Grammatical Error Diagnosis (CGED). CGED aims to diagnose four types of grammatical errors which are missing words (M), redundant words (R), bad word selection (S) and disordered words (W). Our system is built on the model of multi-layer bidirectional transformer encoder and ResNet is integrated into the encoder to improve the performance. We also explore two ensemble strategies including weighted averaging and stepwise ensemble selection from libraries of models to improve the performance of single model. In official evaluation, our system obtains the highest F1 scores at identification level and position level. We also recommend error corrections for specific error types and achieve the second highest F1 score at correction level.
Legal Tech is developed to help people with legal services and solve legal problems via machines. To achieve this, one of the key requirements for machines is to utilize legal knowledge and comprehend legal context. This can be fulfilled by natural language processing (NLP) techniques, for instance, text representation, text categorization, question answering (QA) and natural language inference, etc. To this end, we introduce a freely available Chinese Legal Tech system (IFlyLegal) that benefits from multiple NLP tasks. It is an integrated system that performs legal consulting, multi-way law searching, and legal document analysis by exploiting techniques such as deep contextual representations and various attention mechanisms. To our knowledge, IFlyLegal is the first Chinese legal system that employs up-to-date NLP techniques and caters for needs of different user groups, such as lawyers, judges, procurators, and clients. Since Jan, 2019, we have gathered 2,349 users and 28,238 page views (till June, 23, 2019).
Recurrent neural network (RNN) has achieved remarkable performance in text categorization. RNN can model the entire sequence and capture long-term dependencies, but it does not do well in extracting key patterns. In contrast, convolutional neural network (CNN) is good at extracting local and position-invariant features. In this paper, we present a novel model named disconnected recurrent neural network (DRNN), which incorporates position-invariance into RNN. By limiting the distance of information flow in RNN, the hidden state at each time step is restricted to represent words near the current position. The proposed model makes great improvements over RNN and CNN models and achieves the best performance on several benchmark datasets for text categorization.