End-to-end automatic speech recognition (ASR) systems have made significant progress in general scenarios. However, it remains challenging to transcribe contextual named entities (NEs) in the contextual ASR scenario. Previous approaches have attempted to address this by utilizing the NE dictionary. These approaches treat entities as individual tokens and generate them token-by-token, which may result in incomplete transcriptions of entities. In this paper, we treat entities as indivisible wholes and introduce the idea of copying into ASR. We design a systematic mechanism called CopyNE, which can copy entities from the NE dictionary. By copying all tokens of an entity at once, we can reduce errors during entity transcription, ensuring the completeness of the entity. Experiments demonstrate that CopyNE consistently improves the accuracy of transcribing entities compared to previous approaches. Even when based on the strong Whisper, CopyNE still achieves notable improvements.
Direct speech-to-speech translation achieves high-quality results through the introduction of discrete units obtained from self-supervised learning. However, talking head translation, converting audio-visual speech (i.e., talking head video) from one language into another, still confronts several challenges compared to audio speech: (1) Existing methods invariably rely on cascading, synthesizing via both audio and text, resulting in delays and cascading errors. (2) Talking head translation has a limited set of reference frames. If the generated translation exceeds the length of the original speech, the video sequence needs to be supplemented by repeating frames, leading to jarring video transitions. In this work, we propose a model for talking head translation, TransFace, which can directly translate audio-visual speech into audio-visual speech in other languages. It consists of a speech-to-unit translation model to convert audio speech into discrete units and a unit-based audio-visual speech synthesizer, Unit2Lip, to re-synthesize synchronized audio-visual speech from discrete units in parallel. Furthermore, we introduce a Bounded Duration Predictor, ensuring isometric talking head translation and preventing duplicate reference frames. Experiments demonstrate that Unit2Lip significantly improves synchronization and boosts inference speed by a factor of 4.35 on LRS2. Additionally, TransFace achieves impressive BLEU scores of 61.93 and 47.55 for Es-En and Fr-En on LRS3-T and 100% isochronous translations. The samples are available at https://transface-demo.github.io .
Nowadays, character-based sequence labeling becomes the mainstream Chinese named entity recognition (CNER) approach, instead of word-based methods, since the latter degrades performance due to propagation of word segmentation (WS) errors. To make use of WS information, previous studies usually learn CNER and WS simultaneously with multi-task learning (MTL) framework, or treat WS information as extra guide features for CNER model, in which the utilization of WS information is indirect and shallow. In light of the complementary information inside multi-grained words, and the close connection between named entities and part-of-speech (POS) tags, this work proposes a tree parsing approach for joint modeling CNER, multi-grained word segmentation (MWS) and POS tagging tasks simultaneously. Specifically, we first propose a unified tree representation for MWS, POS tagging, and CNER.Then, we automatically construct the MWS-POS-NER data based on the unified tree representation for model training. Finally, we present a two-stage joint tree parsing framework. Experimental results on OntoNotes4 and OntoNotes5 show that our proposed approach of jointly modeling CNER with MWS and POS tagging achieves better or comparable performance with latest methods.
Factuality is important to dialogue summarization. Factual error correction (FEC) of model-generated summaries is one way to improve factuality. Current FEC evaluation that relies on factuality metrics is not reliable and detailed enough. To address this problem, we are the first to manually annotate a FEC dataset for dialogue summarization containing 4000 items and propose FERRANTI, a fine-grained evaluation framework based on reference correction that automatically evaluates the performance of FEC models on different error categories. Using this evaluation framework, we conduct sufficient experiments with FEC approaches under a variety of settings and find the best training modes and significant differences in the performance of the existing approaches on different factual error categories.
Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at https://github.com/Spico197/Mirror .
Developing monolingual large Pre-trained Language Models (PLMs) is shown to be very successful in handling different tasks in Natural Language Processing (NLP). In this work, we present AraMUS, the largest Arabic PLM with 11B parameters trained on 529GB of high-quality Arabic textual data. AraMUS achieves state-of-the-art performances on a diverse set of Arabic classification and generative tasks. Moreover, AraMUS shows impressive few-shot learning abilities compared with the best existing Arabic PLMs.
There is a growing body of work in recent years to develop pre-trained language models (PLMs) for the Arabic language. This work addresses two major problems in existing Arabic PLMs that limit the progress of the Arabic NLU and NLG fields. First, existing Arabic PLMs are not well-explored and their pre-training can be improved significantly using a more methodical approach. Second, there is a lack of systematic and reproducible evaluation of these models in the literature. We revisit both the pre-training and evaluation of Arabic PLMs. In terms of pre-training, we explore the impact of the quality of the pretraining data, the size of the model, and the incorporation of character-level information on Arabic PLM. As a result, we release three new Arabic BERT-style models ( JABER, Char-JABER, and SABER), and two T5-style models (AT5S and AT5B). In terms of evaluation, we conduct a comprehensive empirical study to systematically evaluate the performance of existing state-of-the-art models on ALUE, a leaderboard-powered benchmark for Arabic NLU tasks, and on a subset of the Arabic generative tasks. We show that our models significantly outperform existing Arabic PLMs and achieve a new state-of-the-art performance on discriminative and generative Arabic NLU and NLG tasks. Our models and source code to reproduce results will be made available upon acceptance.
Causal chain reasoning (CCR) is an essential ability for many decision-making AI systems, which requires the model to build reliable causal chains by connecting causal pairs. However, CCR suffers from two main transitive problems: threshold effect and scene drift. In other words, the causal pairs to be spliced may have a conflicting threshold boundary or scenario.To address these issues, we propose a novel Reliable Causal chain reasoning framework (ReCo), which introduces exogenous variables to represent the threshold and scene factors of each causal pair within the causal chain, and estimates the threshold and scene contradictions across exogenous variables via structural causal recurrent neural networks (SRNN). Experiments show that ReCo outperforms a series of strong baselines on both Chinese and English CCR datasets. Moreover, by injecting reliable causal chain knowledge distilled by ReCo, BERT can achieve better performances on four downstream causal-related tasks than BERT models enhanced by other kinds of knowledge.
Recent years have witnessed the improving performance of Chinese Named Entity Recognition (NER) from proposing new frameworks or incorporating word lexicons. However, the inner composition of entity mentions in character-level Chinese NER has been rarely studied. Actually, most mentions of regular types have strong name regularity. For example, entities end with indicator words such as “公司 (company) ” or “银行 (bank)” usually belong to organization. In this paper, we propose a simple but effective method for investigating the regularity of entity spans in Chinese NER, dubbed as Regularity-Inspired reCOgnition Network (RICON). Specifically, the proposed model consists of two branches: a regularity-aware module and a regularity-agnostic module. The regularity-aware module captures the internal regularity of each span for better entity type prediction, while the regularity-agnostic module is employed to locate the boundary of entities and relieve the excessive attention to span regularity. An orthogonality space is further constructed to encourage two modules to extract different aspects of regularity features. To verify the effectiveness of our method, we conduct extensive experiments on three benchmark datasets and a practical medical dataset. The experimental results show that our RICON significantly outperforms previous state-of-the-art methods, including various lexicon-based methods.
Unlike English letters, Chinese characters have rich and specific meanings. Usually, the meaning of a word can be derived from its constituent characters in some way. Several previous works on syntactic parsing propose to annotate shallow word-internal structures for better utilizing character-level information. This work proposes to model the deep internal structures of Chinese words as dependency trees with 11 labels for distinguishing syntactic relationships. First, based on newly compiled annotation guidelines, we manually annotate a word-internal structure treebank (WIST) consisting of over 30K multi-char words from Chinese Penn Treebank. To guarantee quality, each word is independently annotated by two annotators and inconsistencies are handled by a third senior annotator. Second, we present detailed and interesting analysis on WIST to reveal insights on Chinese word formation. Third, we propose word-internal structure parsing as a new task, and conduct benchmark experiments using a competitive dependency parser. Finally, we present two simple ways to encode word-internal structures, leading to promising gains on the sentence-level syntactic parsing task.
The most straightforward approach to joint word segmentation (WS), part-of-speech (POS) tagging, and constituent parsing is converting a word-level tree into a char-level tree, which, however, leads to two severe challenges. First, a larger label set (e.g., ≥ 600) and longer inputs both increase computational costs. Second, it is difficult to rule out illegal trees containing conflicting production rules, which is important for reliable model evaluation. If a POS tag (like VV) is above a phrase tag (like VP) in the output tree, it becomes quite complex to decide word boundaries. To deal with both challenges, this work proposes a two-stage coarse-to-fine labeling framework for joint WS-POS-PAR. In the coarse labeling stage, the joint model outputs a bracketed tree, in which each node corresponds to one of four labels (i.e., phrase, subphrase, word, subword). The tree is guaranteed to be legal via constrained CKY decoding. In the fine labeling stage, the model expands each coarse label into a final label (such as VP, VP*, VV, VV*). Experiments on Chinese Penn Treebank 5.1 and 7.0 show that our joint model consistently outperforms the pipeline approach on both settings of w/o and w/ BERT, and achieves new state-of-the-art performance.
Thanks to the strong representation learning capability of deep learning, especially pre-training techniques with language model loss, dependency parsing has achieved great performance boost in the in-domain scenario with abundant labeled training data for target domains. However, the parsing community has to face the more realistic setting where the parsing performance drops drastically when labeled data only exists for several fixed out-domains. In this work, we propose a novel model for multi-source cross-domain dependency parsing. The model consists of two components, i.e., a parameter generation network for distinguishing domain-specific features, and an adversarial network for learning domain-invariant representations. Experiments on a recently released NLPCC-2019 dataset for multi-domain dependency parsing show that our model can consistently improve cross-domain parsing performance by about 2 points in averaged labeled attachment accuracy (LAS) over strong BERT-enhanced baselines. Detailed analysis is conducted to gain more insights on contributions of the two components.
Motivated by applications such as question answering, fact checking, and data integration, there is significant interest in constructing knowledge graphs by extracting information from unstructured information sources, particularly text documents. Knowledge graphs have emerged as a standard for structured knowledge representation, whereby entities and their inter-relations are represented and conveniently stored as (subject,predicate,object) triples in a graph that can be used to power various downstream applications. The proliferation of financial news sources reporting on companies, markets, currencies, and stocks presents an opportunity for extracting valuable knowledge about this crucial domain. In this paper, we focus on constructing a knowledge graph automatically by information extraction from a large corpus of financial news articles. For that purpose, we develop a high precision knowledge extraction pipeline tailored for the financial domain. This pipeline combines multiple information extraction techniques with a financial dictionary that we built, all working together to produce over 342,000 compact extractions from over 288,000 financial news articles, with a precision of 78% at the top-100 extractions. The extracted triples are stored in a knowledge graph making them readily available for use in downstream applications.