2024
pdf
bib
abs
SEC : contexte émotionnel phrastique intégré pour la reconnaissance émotionnelle efficiente dans la conversation
Barbara Gendron
|
Gaël Guibon
Actes de la 31ème Conférence sur le Traitement Automatique des Langues Naturelles, volume 1 : articles longs et prises de position
L’essor des modèles d’apprentissage profond a apporté une contribution significative à la reconnaissance des émotions dans les conversations (ERC). Cependant, cette tâche reste un défi important en raison de la pluralité et de la subjectivité des émotions humaines. Les travaux antérieurs sur l’ERC fournissent des modèles prédictifs utilisant principalement des représentations de la conversation basées sur des graphes. Dans ce travail, nous proposons une façon de modéliser le contexte conversationnel que nous incorporons à une stratégie d’apprentissage de métrique, avec un processus en deux étapes. Cela permet d’effectuer l’ERC dans un scénario de classification flexible et d’obtenir un modèle léger et efficace. En utilisant l’apprentissage de métrique à travers une architecture de réseau siamois, nous obtenons un score de macroF1 de 57,71 pour la classification des émotions dans les conversations sur le jeu de données DailyDialog, ce qui surpasse les travaux connexes. Ce résultat état-de-l’art est prometteur en ce qui concerne l’utilisation de l’apprentissage de métrique pour la reconnaissance des émotions, mais est perfectible au regard du microF1 obtenu.
pdf
bib
abs
SEC: Context-Aware Metric Learning for Efficient Emotion Recognition in Conversation
Barbara Gendron
|
Gaël Guibon
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
The advent of deep learning models has made a considerable contribution to the achievement of Emotion Recognition in Conversation (ERC). However, this task still remains an important challenge due to the plurality and subjectivity of human emotions. Previous work on ERC provides predictive models using mostly graph-based conversation representations. In this work, we propose a way to model the conversational context that we incorporate into a metric learning training strategy, with a two-step process. This allows us to perform ERC in a flexible classification scenario and end up with a lightweight yet efficient model. Using metric learning through a Siamese Network architecture, we achieve 57.71 in macro F1 score for emotion classification in conversation on DailyDialog dataset, which outperforms the related work. This state-of-the-art result is promising in terms of the use of metric learning for emotion recognition, yet perfectible compared to the micro F1 score obtained.
2023
pdf
bib
abs
Participation de l’équipe TTGV à DEFT 2023~: Réponse automatique à des QCM issus d’examens en pharmacie
Andréa Blivet
|
Solène Degrutère
|
Barbara Gendron
|
Aurélien Renault
|
Cyrille Siouffi
|
Vanessa Gaudray Bouju
|
Christophe Cerisara
|
Hélène Flamein
|
Gaël Guibon
|
Matthieu Labeau
|
Tom Rousseau
Actes de CORIA-TALN 2023. Actes du Défi Fouille de Textes@TALN2023
Cet article présente l’approche de l’équipe TTGV dans le cadre de sa participation aux deux tâches proposées lors du DEFT 2023 : l’identification du nombre de réponses supposément justes à un QCM et la prédiction de l’ensemble de réponses correctes parmi les cinq proposées pour une question donnée. Cet article présente les différentes méthodologies mises en oeuvre, explorant ainsi un large éventail d’approches et de techniques pour aborder dans un premier temps la distinction entre les questions appelant une seule ou plusieurs réponses avant de s’interroger sur l’identification des réponses correctes. Nous détaillerons les différentes méthodes utilisées, en mettant en exergue leurs avantages et leurs limites respectives. Ensuite, nous présenterons les résultats obtenus pour chaque approche. Enfin, nous discuterons des limitations intrinsèques aux tâches elles-mêmes ainsi qu’aux approches envisagées dans cette contribution.
pdf
bib
Code-switching as a cross-lingual Training Signal: an Example with Unsupervised Bilingual Embedding
Felix Gaschi
|
Ilias El-Baamrani
|
Barbara Gendron
|
Parisa Rastin
|
Yannick Toussaint
Proceedings of the 3rd Workshop on Multi-lingual Representation Learning (MRL)