We introduce mEdIT, a multi-lingual extension to CoEdIT – the recent state-of-the-art text editing models for writing assistance. mEdIT models are trained by fine-tuning multi-lingual large, pre-trained language models (LLMs) via instruction tuning. They are designed to take instructions from the user specifying the attributes of the desired text in the form of natural language instructions, such as “Grammatik korrigieren” (German) or “이 텍스 트를 단순화” (Korean). We build mEdIT by curating data from multiple publicly available human-annotated text editing datasets for three text editing tasks (Grammatical Error Correction (GEC), Text Simplification, and Paraphrasing) across diverse languages belonging to six different language families. We detail the design and training of mEdIT models and demonstrate their strong performance on many multi-lingual text editing benchmarks against other multilingual LLMs. We also find that mEdIT generalizes effectively to new languages over multilingual baselines. We publicly release our data, code, and trained models.
As the text generation capabilities of large language models become increasingly prominent, recent studies have focused on controlling particular aspects of the generated text to make it more personalized. However, most research on controllable text generation focuses on controlling the content or modeling specific high-level/coarse-grained attributes that reflect authors’ writing styles, such as formality, domain, or sentiment. In this paper, we focus on controlling fine-grained attributes spanning multiple linguistic dimensions, such as lexical and syntactic attributes. We introduce a novel benchmark to train generative models and evaluate their ability to generate personalized text based on multiple fine-grained linguistic attributes. We systematically investigate the performance of various large language models on our benchmark and draw insights from the factors that impact their performance. We make our code, data, models, and benchmarks publicly available.
Dialectal Arabic is the primary spoken language used by native Arabic speakers in daily communication. The rise of social media platforms has notably expanded its use as a written language. However, Arabic dialects do not have standard orthographies. This, combined with the inherent noise in user-generated content on social media, presents a major challenge to NLP applications dealing with Dialectal Arabic. In this paper, we explore and report on the task of CODAfication, which aims to normalize Dialectal Arabic into the Conventional Orthography for Dialectal Arabic (CODA). We work with a unique parallel corpus of multiple Arabic dialects focusing on five major city dialects. We benchmark newly developed pretrained sequence-to-sequence models on the task of CODAfication. We further show that using dialect identification information improves the performance across all dialects. We make our code, data, andpretrained models publicly available.
Automatic readability assessment is relevant to building NLP applications for education, content analysis, and accessibility. However, Arabic readability assessment is a challenging task due to Arabic’s morphological richness and limited readability resources. In this paper, we present a set of experimental results on Arabic readability assessment using a diverse range of approaches, from rule-based methods to Arabic pretrained language models. We report our results on a newly created corpus at different textual granularity levels (words and sentence fragments). Our results show that combining different techniques yields the best results, achieving an overall macro F1 score of 86.7 at the word level and 87.9 at the fragment level on a blind test set. We make our code, data, and pretrained models publicly available.
We present the SAMER Corpus, the first manually annotated Arabic parallel corpus for text simplification targeting school-aged learners. Our corpus comprises texts of 159K words selected from 15 publicly available Arabic fiction novels most of which were published between 1865 and 1955. Our corpus includes readability level annotations at both the document and word levels, as well as two simplified parallel versions for each text targeting learners at two different readability levels. We describe the corpus selection process, and outline the guidelines we followed to create the annotations and ensure their quality. Our corpus is publicly available to support and encourage research on Arabic text simplification, Arabic automatic readability assessment, and the development of Arabic pedagogical language technologies.
Grammatical error correction (GEC) is a well-explored problem in English with many existing models and datasets. However, research on GEC in morphologically rich languages has been limited due to challenges such as data scarcity and language complexity. In this paper, we present the first results on Arabic GEC using two newly developed Transformer-based pretrained sequence-to-sequence models. We also define the task of multi-class Arabic grammatical error detection (GED) and present the first results on multi-class Arabic GED. We show that using GED information as auxiliary input in GEC models improves GEC performance across three datasets spanning different genres. Moreover, we also investigate the use of contextual morphological preprocessing in aiding GEC systems. Our models achieve SOTA results on two Arabic GEC shared task datasets and establish a strong benchmark on a recently created dataset. We make our code, data, and pretrained models publicly available.
We introduce the User-Aware Arabic Gender Rewriter, a user-centric web-based system for Arabic gender rewriting in contexts involving two users. The system takes either Arabic or English sentences as input, and provides users with the ability to specify their desired first and/or second person target genders. The system outputs gender rewritten alternatives of the Arabic sentences (provided directly or as translation outputs) to match the target users’ gender preferences.
In this paper, we define the task of gender rewriting in contexts involving two users (I and/or You) – first and second grammatical persons with independent grammatical gender preferences. We focus on Arabic, a gender-marking morphologically rich language. We develop a multi-step system that combines the positive aspects of both rule-based and neural rewriting models. Our results successfully demonstrate the viability of this approach on a recently created corpus for Arabic gender rewriting, achieving 88.42 M2 F0.5 on a blind test set. Our proposed system improves over previous work on the first-person-only version of this task, by 3.05 absolute increase in M2 F0.5. We demonstrate a use case of our gender rewriting system by using it to post-edit the output of a commercial MT system to provide personalized outputs based on the users’ grammatical gender preferences. We make our code, data, and pretrained models publicly available.
This demo paper presents a Google Docs add-on for automatic Arabic word-level readability visualization. The add-on includes a lemmatization component that is connected to a five-level readability lexicon and Arabic WordNet-based substitution suggestions. The add-on can be used for assessing the reading difficulty of a text and identifying difficult words as part of the task of manual text simplification. We make our add-on and its code publicly available.
Social media has increasingly played a key role in emergency response: first responders can use public posts to better react to ongoing crisis events and deploy the necessary resources where they are most needed. Timeline extraction and abstractive summarization are critical technical tasks to leverage large numbers of social media posts about events. Unfortunately, there are few datasets for benchmarking technical approaches for those tasks. This paper presents , the largest dataset of local crisis event timelines available to date. contains 1,000 crisis event timelines across four domains: wildfires, local fires, traffic, and storms. We built using a semi-automated cluster-then-refine approach to collect data from the public Twitter stream. Our initial experiments indicate a significant gap between the performance of strong baselines compared to the human performance on both tasks.Our dataset, code, and models are publicly available (https://github.com/CrisisLTLSum/CrisisTimelines).
In this paper, we present the results and findings of the Shared Task on Gender Rewriting, which was organized as part of the Seventh Arabic Natural Language Processing Workshop. The task of gender rewriting refers to generating alternatives of a given sentence to match different target user gender contexts (e.g., a female speaker with a male listener, a male speaker with a male listener, etc.). This requires changing the grammatical gender (masculine or feminine) of certain words referring to the users. In this task, we focus on Arabic, a gender-marking morphologically rich language. A total of five teams from four countries participated in the shared task.
Gender bias in natural language processing (NLP) applications, particularly machine translation, has been receiving increasing attention. Much of the research on this issue has focused on mitigating gender bias in English NLP models and systems. Addressing the problem in poorly resourced, and/or morphologically rich languages has lagged behind, largely due to the lack of datasets and resources. In this paper, we introduce a new corpus for gender identification and rewriting in contexts involving one or two target users (I and/or You) – first and second grammatical persons with independent grammatical gender preferences. We focus on Arabic, a gender-marking morphologically rich language. The corpus has multiple parallel components: four combinations of 1st and 2nd person in feminine and masculine grammatical genders, as well as English, and English to Arabic machine translation output. This corpus expands on Habash et al. (2019)’s Arabic Parallel Gender Corpus (APGC v1.0) by adding second person targets as well as increasing the total number of sentences over 6.5 times, reaching over 590K words. Our new dataset will aid the research and development of gender identification, controlled text generation, and post-editing rewrite systems that could be used to personalize NLP applications and provide users with the correct outputs based on their grammatical gender preferences. We make the Arabic Parallel Gender Corpus (APGC v2.0) publicly available
In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.
In this paper, we present an approach for sentence-level gender reinflection using linguistically enhanced sequence-to-sequence models. Our system takes an Arabic sentence and a given target gender as input and generates a gender-reinflected sentence based on the target gender. We formulate the problem as a user-aware grammatical error correction task and build an encoder-decoder architecture to jointly model reinflection for both masculine and feminine grammatical genders. We also show that adding linguistic features to our model leads to better reinflection results. The results on a blind test set using our best system show improvements over previous work, with a 3.6% absolute increase in M2 F0.5.
We present CAMeL Tools, a collection of open-source tools for Arabic natural language processing in Python. CAMeL Tools currently provides utilities for pre-processing, morphological modeling, Dialect Identification, Named Entity Recognition and Sentiment Analysis. In this paper, we describe the design of CAMeL Tools and the functionalities it provides.