Behzad Golshan


2020

pdf bib
SubjQA: A Dataset for Subjectivity and Review Comprehension
Johannes Bjerva | Nikita Bhutani | Behzad Golshan | Wang-Chiew Tan | Isabelle Augenstein
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Subjectivity is the expression of internal opinions or beliefs which cannot be objectively observed or verified, and has been shown to be important for sentiment analysis and word-sense disambiguation. Furthermore, subjectivity is an important aspect of user-generated data. In spite of this, subjectivity has not been investigated in contexts where such data is widespread, such as in question answering (QA). We develop a new dataset which allows us to investigate this relationship. We find that subjectivity is an important feature in the case of QA, albeit with more intricate interactions between subjectivity and QA performance than found in previous work on sentiment analysis. For instance, a subjective question may or may not be associated with a subjective answer. We release an English QA dataset (SubjQA) based on customer reviews, containing subjectivity annotations for questions and answer spans across 6 domains.

2019

pdf bib
Essentia: Mining Domain-specific Paraphrases with Word-Alignment Graphs
Danni Ma | Chen Chen | Behzad Golshan | Wang-Chiew Tan
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)

Paraphrases are important linguistic resources for a wide variety of NLP applications. Many techniques for automatic paraphrase mining from general corpora have been proposed. While these techniques are successful at discovering generic paraphrases, they often fail to identify domain-specific paraphrases (e.g., staff, concierge in the hospitality domain). This is because current techniques are often based on statistical methods, while domain-specific corpora are too small to fit statistical methods. In this paper, we present an unsupervised graph-based technique to mine paraphrases from a small set of sentences that roughly share the same topic or intent. Our system, Essentia, relies on word-alignment techniques to create a word-alignment graph that merges and organizes tokens from input sentences. The resulting graph is then used to generate candidate paraphrases. We demonstrate that our system obtains high quality paraphrases, as evaluated by crowd workers. We further show that the majority of the identified paraphrases are domain-specific and thus complement existing paraphrase databases.

2018

pdf bib
HappyDB: A Corpus of 100,000 Crowdsourced Happy Moments
Akari Asai | Sara Evensen | Behzad Golshan | Alon Halevy | Vivian Li | Andrei Lopatenko | Daniela Stepanov | Yoshihiko Suhara | Wang-Chiew Tan | Yinzhan Xu
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)