Bei Xiao


2025

pdf bib
Unveiling Language Competence Neurons: A Psycholinguistic Approach to Model Interpretability
Xufeng Duan | Xinyu Zhou | Bei Xiao | Zhenguang Cai
Proceedings of the 31st International Conference on Computational Linguistics

As large language models (LLMs) advance in their linguistic capacity, understanding how they capture aspects of language competence remains a significant challenge. This study therefore employs psycholinguistic paradigms, which are well-suited for probing deeper cognitive aspects of language processing, to explore neuron-level representations in language model across three tasks: sound-shape association, sound-gender association, and implicit causality. Our findings indicate that while GPT-2-XL struggles with the sound-shape task, it demonstrates human-like abilities in both sound-gender association and implicit causality. Targeted neuron ablation and activation manipulation reveal a crucial relationship: When GPT-2-XL displays a linguistic ability, specific neurons correspond to that competence; conversely, the absence of such an ability indicates a lack of specialized neurons. This study is the first to utilize psycholinguistic experiments to investigate deep language competence at the neuron level, providing a new level of granularity in model interpretability and insights into the internal mechanisms driving language ability in the transformer-based LLM.

2020

pdf bib
Towards More Accurate Uncertainty Estimation In Text Classification
Jianfeng He | Xuchao Zhang | Shuo Lei | Zhiqian Chen | Fanglan Chen | Abdulaziz Alhamadani | Bei Xiao | ChangTien Lu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The uncertainty measurement of classified results is especially important in areas requiring limited human resources for higher accuracy. For instance, data-driven algorithms diagnosing diseases need accurate uncertainty score to decide whether additional but limited quantity of experts are needed for rectification. However, few uncertainty models focus on improving the performance of text classification where human resources are involved. To achieve this, we aim at generating accurate uncertainty score by improving the confidence of winning scores. Thus, a model called MSD, which includes three independent components as “mix-up”, “self-ensembling”, “distinctiveness score”, is proposed to improve the accuracy of uncertainty score by reducing the effect of overconfidence of winning score and considering the impact of different categories of uncertainty simultaneously. MSD can be applied with different Deep Neural Networks. Extensive experiments with ablation setting are conducted on four real-world datasets, on which, competitive results are obtained.