Beining Wang
2024
Do Clinicians Know How to Prompt? The Need for Automatic Prompt Optimization Help in Clinical Note Generation
Zonghai Yao
|
Ahmed Jaafar
|
Beining Wang
|
Zhichao Yang
|
Hong Yu
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
This study examines the effect of prompt engineering on the performance of Large Language Models (LLMs) in clinical note generation. We introduce an Automatic Prompt Optimization (APO) framework to refine initial prompts and compare the outputs of medical experts, non-medical experts, and APO-enhanced GPT3.5 and GPT4. Results highlight GPT4-APO’s superior performance in standardizing prompt quality across clinical note sections. A human-in-the-loop approach shows that experts maintain content quality post-APO, with a preference for their own modifications, suggesting the value of expert customization. We recommend a two-phase optimization process, leveraging APO-GPT4 for consistency and expert input for personalization.
SYNFAC-EDIT: Synthetic Imitation Edit Feedback for Factual Alignment in Clinical Summarization
Prakamya Mishra
|
Zonghai Yao
|
Parth Vashisht
|
Feiyun Ouyang
|
Beining Wang
|
Vidhi Dhaval Mody
|
Hong Yu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) such as GPT & Llama have demonstrated significant achievements in summarization tasks but struggle with factual inaccuracies, a critical issue in clinical NLP applications where errors could lead to serious consequences. To counter the high costs and limited availability of expert-annotated data for factual alignment, this study introduces an innovative pipeline that utilizes >100B parameter GPT variants like GPT-3.5 & GPT-4 to act as synthetic experts to generate high-quality synthetics feedback aimed at enhancing factual consistency in clinical note summarization. Our research primarily focuses on edit feedback generated by these synthetic feedback experts without additional human annotations, mirroring and optimizing the practical scenario in which medical professionals refine AI system outputs. Although such 100B+ parameter GPT variants have proven to demonstrate expertise in various clinical NLP tasks, such as the Medical Licensing Examination, there is scant research on their capacity to act as synthetic feedback experts and deliver expert-level edit feedback for improving the generation quality of weaker (<10B parameter) LLMs like GPT-2 (1.5B) & Llama 2 (7B) in clinical domain. So in this work, we leverage 100B+ GPT variants to act as synthetic feedback experts offering expert-level edit feedback, that is used to reduce hallucinations and align weaker (<10B parameter) LLMs with medical facts using two distinct alignment algorithms (DPO & SALT), endeavoring to narrow the divide between AI-generated content and factual accuracy. This highlights the substantial potential of LLM-based synthetic edits in enhancing the alignment of clinical factuality.
Search
Fix data
Co-authors
- Zonghai Yao 2
- Hong Yu 2
- Feiyun Ouyang 1
- Ahmed Jaafar 1
- Prakamya Mishra 1
- show all...