Ben Peters


2022

pdf bib
DeepSPIN: Deep Structured Prediction for Natural Language Processing
André F. T. Martins | Ben Peters | Chrysoula Zerva | Chunchuan Lyu | Gonçalo Correia | Marcos Treviso | Pedro Martins | Tsvetomila Mihaylova
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

DeepSPIN is a research project funded by the European Research Council (ERC) whose goal is to develop new neural structured prediction methods, models, and algorithms for improving the quality, interpretability, and data-efficiency of natural language processing (NLP) systems, with special emphasis on machine translation and quality estimation. We describe in this paper the latest findings from this project.

2021

pdf bib
Smoothing and Shrinking the Sparse Seq2Seq Search Space
Ben Peters | André F. T. Martins
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Current sequence-to-sequence models are trained to minimize cross-entropy and use softmax to compute the locally normalized probabilities over target sequences. While this setup has led to strong results in a variety of tasks, one unsatisfying aspect is its length bias: models give high scores to short, inadequate hypotheses and often make the empty string the argmax—the so-called cat got your tongue problem. Recently proposed entmax-based sparse sequence-to-sequence models present a possible solution, since they can shrink the search space by assigning zero probability to bad hypotheses, but their ability to handle word-level tasks with transformers has never been tested. In this work, we show that entmax-based models effectively solve the cat got your tongue problem, removing a major source of model error for neural machine translation. In addition, we generalize label smoothing, a critical regularization technique, to the broader family of Fenchel-Young losses, which includes both cross-entropy and the entmax losses. Our resulting label-smoothed entmax loss models set a new state of the art on multilingual grapheme-to-phoneme conversion and deliver improvements and better calibration properties on cross-lingual morphological inflection and machine translation for 7 language pairs.

2020

pdf bib
One-Size-Fits-All Multilingual Models
Ben Peters | André F. T. Martins
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents DeepSPIN’s submissions to Tasks 0 and 1 of the SIGMORPHON 2020 Shared Task. For both tasks, we present multilingual models, training jointly on data in all languages. We perform no language-specific hyperparameter tuning – each of our submissions uses the same model for all languages. Our basic architecture is the sparse sequence-to-sequence model with entmax attention and loss, which allows our models to learn sparse, local alignments while still being trainable with gradient-based techniques. For Task 1, we achieve strong performance with both RNN- and transformer-based sparse models. For Task 0, we extend our RNN-based model to a multi-encoder set-up in which separate modules encode the lemma and inflection sequences. Despite our models’ lack of language-specific tuning, they tie for first in Task 0 and place third in Task 1.

2019

pdf bib
ITIST at the SIGMORPHON 2019 Shared Task: Sparse Two-headed Models for Inflection
Ben Peters | André F. T. Martins
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents the Instituto de Telecomunicações–Instituto Superior Técnico submission to Task 1 of the SIGMORPHON 2019 Shared Task. Our models combine sparse sequence-to-sequence models with a two-headed attention mechanism that learns separate attention distributions for the lemma and inflectional tags. Among submissions to Task 1, our models rank second and third. Despite the low data setting of the task (only 100 in-language training examples), they learn plausible inflection patterns and often concentrate all probability mass into a small set of hypotheses, making beam search exact.

pdf bib
Sparse Sequence-to-Sequence Models
Ben Peters | Vlad Niculae | André F. T. Martins
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Sequence-to-sequence models are a powerful workhorse of NLP. Most variants employ a softmax transformation in both their attention mechanism and output layer, leading to dense alignments and strictly positive output probabilities. This density is wasteful, making models less interpretable and assigning probability mass to many implausible outputs. In this paper, we propose sparse sequence-to-sequence models, rooted in a new family of 𝛼-entmax transformations, which includes softmax and sparsemax as particular cases, and is sparse for any 𝛼 > 1. We provide fast algorithms to evaluate these transformations and their gradients, which scale well for large vocabulary sizes. Our models are able to produce sparse alignments and to assign nonzero probability to a short list of plausible outputs, sometimes rendering beam search exact. Experiments on morphological inflection and machine translation reveal consistent gains over dense models.

2018

pdf bib
Interpretable Structure Induction via Sparse Attention
Ben Peters | Vlad Niculae | André F. T. Martins
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

Neural network methods are experiencing wide adoption in NLP, thanks to their empirical performance on many tasks. Modern neural architectures go way beyond simple feedforward and recurrent models: they are complex pipelines that perform soft, differentiable computation instead of discrete logic. The price of such soft computing is the introduction of dense dependencies, which make it hard to disentangle the patterns that trigger a prediction. Our recent work on sparse and structured latent computation presents a promising avenue for enhancing interpretability of such neural pipelines. Through this extended abstract, we aim to discuss and explore the potential and impact of our methods.

2017

pdf bib
Massively Multilingual Neural Grapheme-to-Phoneme Conversion
Ben Peters | Jon Dehdari | Josef van Genabith
Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems

Grapheme-to-phoneme conversion (g2p) is necessary for text-to-speech and automatic speech recognition systems. Most g2p systems are monolingual: they require language-specific data or handcrafting of rules. Such systems are difficult to extend to low resource languages, for which data and handcrafted rules are not available. As an alternative, we present a neural sequence-to-sequence approach to g2p which is trained on spelling–pronunciation pairs in hundreds of languages. The system shares a single encoder and decoder across all languages, allowing it to utilize the intrinsic similarities between different writing systems. We show an 11% improvement in phoneme error rate over an approach based on adapting high-resource monolingual g2p models to low-resource languages. Our model is also much more compact relative to previous approaches.