Benedetta Iavarone


pdf bib
Sentence Complexity in Context
Benedetta Iavarone | Dominique Brunato | Felice Dell’Orletta
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

We study the influence of context on how humans evaluate the complexity of a sentence in English. We collect a new dataset of sentences, where each sentence is rated for perceived complexity within different contextual windows. We carry out an in-depth analysis to detect which linguistic features correlate more with complexity judgments and with the degree of agreement among annotators. We train several regression models, using either explicit linguistic features or contextualized word embeddings, to predict the mean complexity values assigned to sentences in the different contextual windows, as well as their standard deviation. Results show that models leveraging explicit features capturing morphosyntactic and syntactic phenomena perform always better, especially when they have access to features extracted from all contextual sentences.


pdf bib
Is this Sentence Difficult? Do you Agree?
Dominique Brunato | Lorenzo De Mattei | Felice Dell’Orletta | Benedetta Iavarone | Giulia Venturi
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In this paper, we present a crowdsourcing-based approach to model the human perception of sentence complexity. We collect a large corpus of sentences rated with judgments of complexity for two typologically-different languages, Italian and English. We test our approach in two experimental scenarios aimed to investigate the contribution of a wide set of lexical, morpho-syntactic and syntactic phenomena in predicting i) the degree of agreement among annotators independently from the assigned judgment and ii) the perception of sentence complexity.