Benjamin Heinzerling


2024

pdf bib
Monotonic Representation of Numeric Attributes in Language Models
Benjamin Heinzerling | Kentaro Inui
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Language models (LMs) can express factual knowledge involving numeric properties such as Karl Popper was born in 1902. However, how this information is encoded in the model’s internal representations is not understood well. Here, we introduce a method for finding and editing representations of numeric properties such as an entity’s birth year. We find directions that encode numeric properties monotonically, in an interpretable fashion. When editing representations along these directions, LM output changes accordingly. For example, by patching activations along a “birthyear” direction we can make the LM express an increasingly late birthyear. Property-encoding directions exist across several numeric properties in all models under consideration, suggesting the possibility that monotonic representation of numeric properties consistently emerges during LM pretraining.Code: https://github.com/bheinzerling/numeric-property-reprA long version of this short paper is available at: https://arxiv.org/abs/2403.10381

2023

pdf bib
Can LMs Store and Retrieve 1-to-N Relational Knowledge?
Haruki Nagasawa | Benjamin Heinzerling | Kazuma Kokuta | Kentaro Inui
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

It has been suggested that pretrained language models can be viewed as knowledge bases. One of the prerequisites for using language models as knowledge bases is how accurately they can store and retrieve world knowledge. It is already revealed that language models can store much 1-to-1 relational knowledge, such as ”country and its capital,” with high memorization accuracy. On the other hand, world knowledge includes not only 1-to-1 but also 1-to-N relational knowledge, such as ”parent and children.”However, it is not clear how accurately language models can handle 1-to-N relational knowledge. To investigate language models’ abilities toward 1-to-N relational knowledge, we start by designing the problem settings. Specifically, we organize the character of 1-to-N relational knowledge and define two essential skills: (i) memorizing multiple objects individually and (ii) retrieving multiple stored objects without excesses or deficiencies at once. We inspect LMs’ ability to handle 1-to-N relational knowledge on the controlled synthesized data. As a result, we report that it is possible to memorize multiple objects with high accuracy, but generalizing the retrieval ability (expressly, enumeration) is challenging.

pdf bib
Prompting for explanations improves Adversarial NLI. Is this true? {Yes} it is {true} because {it weakens superficial cues}
Pride Kavumba | Ana Brassard | Benjamin Heinzerling | Kentaro Inui
Findings of the Association for Computational Linguistics: EACL 2023

Explanation prompts ask language models to not only assign a particular label to a giveninput, such as true, entailment, or contradiction in the case of natural language inference but also to generate a free-text explanation that supports this label. For example: “This is label because explanation.” While this type of prompt was originally introduced with the aim of improving model interpretability, we showhere that explanation prompts also improve robustness to adversarial perturbations in naturallanguage inference benchmarks. Compared to prompting for labels only, explanation prompting consistently yields stronger performance on adversarial benchmarks, outperforming the state of the art on Adversarial Natural Language Inference, Counterfactually-Augmented Natural Language Inference, and SNLI-Hard datasets. We argue that the increase in robustness is due to the fact that prompting for explanations weakens superficial cues. Specifically, single tokens that are highly predictive of the correct answer in the label-only setting become uninformative when the model also has to generate explanations.

pdf bib
Test-time Augmentation for Factual Probing
Go Kamoda | Benjamin Heinzerling | Keisuke Sakaguchi | Kentaro Inui
Findings of the Association for Computational Linguistics: EMNLP 2023

Factual probing is a method that uses prompts to test if a language model “knows” certain world knowledge facts. A problem in factual probing is that small changes to the prompt can lead to large changes in model output. Previous work aimed to alleviate this problem by optimizing prompts via text mining or fine-tuning. However, such approaches are relation-specific and do not generalize to unseen relation types. Here, we propose to use test-time augmentation (TTA) as a relation-agnostic method for reducing sensitivity to prompt variations by automatically augmenting and ensembling prompts at test time. Experiments show improved model calibration, i.e., with TTA, model confidence better reflects prediction accuracy. Improvements in prediction accuracy are observed for some models, but for other models, TTA leads to degradation. Error analysis identifies the difficulty of producing high-quality prompt variations as the main challenge for TTA.

2022

pdf bib
Cross-stitching Text and Knowledge Graph Encoders for Distantly Supervised Relation Extraction
Qin Dai | Benjamin Heinzerling | Kentaro Inui
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Bi-encoder architectures for distantly-supervised relation extraction are designed to make use of the complementary information found in text and knowledge graphs (KG).However, current architectures suffer from two drawbacks. They either do not allow any sharing between the text encoder and the KG encoder at all, or, in case of models with KG-to-text attention, only share information in one direction. Here, we introduce cross-stitch bi-encoders, which allow full interaction between the text encoder and the KG encoder via a cross-stitch mechanism. The cross-stitch mechanism allows sharing and updating representations between the two encoders at any layer, with the amount of sharing being dynamically controlled via cross-attention-based gates. Experimental results on two relation extraction benchmarks from two different domains show that enabling full interaction between the two encoders yields strong improvements.

pdf bib
COPA-SSE: Semi-structured Explanations for Commonsense Reasoning
Ana Brassard | Benjamin Heinzerling | Pride Kavumba | Kentaro Inui
Proceedings of the Thirteenth Language Resources and Evaluation Conference

We present Semi-Structured Explanations for COPA (COPA-SSE), a new crowdsourced dataset of 9,747 semi-structured, English common sense explanations for Choice of Plausible Alternatives (COPA) questions. The explanations are formatted as a set of triple-like common sense statements with ConceptNet relations but freely written concepts. This semi-structured format strikes a balance between the high quality but low coverage of structured data and the lower quality but high coverage of free-form crowdsourcing. Each explanation also includes a set of human-given quality ratings. With their familiar format, the explanations are geared towards commonsense reasoners operating on knowledge graphs and serve as a starting point for ongoing work on improving such systems. The dataset is available at https://github.com/a-brassard/copa-sse.

pdf bib
Tracing and Manipulating intermediate values in Neural Math Problem Solvers
Yuta Matsumoto | Benjamin Heinzerling | Masashi Yoshikawa | Kentaro Inui
Proceedings of the 1st Workshop on Mathematical Natural Language Processing (MathNLP)

How language models process complex input that requires multiple steps of inference is not well understood. Previous research has shown that information about intermediate values of these inputs can be extracted from the activations of the models, but it is unclear where that information is encoded and whether that information is indeed used during inference. We introduce a method for analyzing how a Transformer model processes these inputs by focusing on simple arithmetic problems and their intermediate values. To trace where information about intermediate values is encoded, we measure the correlation between intermediate values and the activations of the model using principal component analysis (PCA). Then, we perform a causal intervention by manipulating model weights. This intervention shows that the weights identified via tracing are not merely correlated with intermediate values, but causally related to model predictions. Our findings show that the model has a locality to certain intermediate values, and this is useful for enhancing the interpretability of the models.

2021

pdf bib
Learning to Learn to be Right for the Right Reasons
Pride Kavumba | Benjamin Heinzerling | Ana Brassard | Kentaro Inui
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Improving model generalization on held-out data is one of the core objectives in common- sense reasoning. Recent work has shown that models trained on the dataset with superficial cues tend to perform well on the easy test set with superficial cues but perform poorly on the hard test set without superficial cues. Previous approaches have resorted to manual methods of encouraging models not to overfit to superficial cues. While some of the methods have improved performance on hard instances, they also lead to degraded performance on easy in- stances. Here, we propose to explicitly learn a model that does well on both the easy test set with superficial cues and the hard test set without superficial cues. Using a meta-learning objective, we learn such a model that improves performance on both the easy test set and the hard test set. By evaluating our models on Choice of Plausible Alternatives (COPA) and Commonsense Explanation, we show that our proposed method leads to improved performance on both the easy test set and the hard test set upon which we observe up to 16.5 percentage points improvement over the baseline.

pdf bib
Language Models as Knowledge Bases: On Entity Representations, Storage Capacity, and Paraphrased Queries
Benjamin Heinzerling | Kentaro Inui
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Pretrained language models have been suggested as a possible alternative or complement to structured knowledge bases. However, this emerging LM-as-KB paradigm has so far only been considered in a very limited setting, which only allows handling 21k entities whose name is found in common LM vocabularies. Furthermore, a major benefit of this paradigm, i.e., querying the KB using natural language paraphrases, is underexplored. Here we formulate two basic requirements for treating LMs as KBs: (i) the ability to store a large number facts involving a large number of entities and (ii) the ability to query stored facts. We explore three entity representations that allow LMs to handle millions of entities and present a detailed case study on paraphrased querying of facts stored in LMs, thereby providing a proof-of-concept that language models can indeed serve as knowledge bases.

2019

pdf bib
Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation
Benjamin Heinzerling | Michael Strube
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Pretrained contextual and non-contextual subword embeddings have become available in over 250 languages, allowing massively multilingual NLP. However, while there is no dearth of pretrained embeddings, the distinct lack of systematic evaluations makes it difficult for practitioners to choose between them. In this work, we conduct an extensive evaluation comparing non-contextual subword embeddings, namely FastText and BPEmb, and a contextual representation method, namely BERT, on multilingual named entity recognition and part-of-speech tagging. We find that overall, a combination of BERT, BPEmb, and character representations works best across languages and tasks. A more detailed analysis reveals different strengths and weaknesses: Multilingual BERT performs well in medium- to high-resource languages, but is outperformed by non-contextual subword embeddings in a low-resource setting.

pdf bib
On the Importance of Subword Information for Morphological Tasks in Truly Low-Resource Languages
Yi Zhu | Benjamin Heinzerling | Ivan Vulić | Michael Strube | Roi Reichart | Anna Korhonen
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Recent work has validated the importance of subword information for word representation learning. Since subwords increase parameter sharing ability in neural models, their value should be even more pronounced in low-data regimes. In this work, we therefore provide a comprehensive analysis focused on the usefulness of subwords for word representation learning in truly low-resource scenarios and for three representative morphological tasks: fine-grained entity typing, morphological tagging, and named entity recognition. We conduct a systematic study that spans several dimensions of comparison: 1) type of data scarcity which can stem from the lack of task-specific training data, or even from the lack of unannotated data required to train word embeddings, or both; 2) language type by working with a sample of 16 typologically diverse languages including some truly low-resource ones (e.g. Rusyn, Buryat, and Zulu); 3) the choice of the subword-informed word representation method. Our main results show that subword-informed models are universally useful across all language types, with large gains over subword-agnostic embeddings. They also suggest that the effective use of subwords largely depends on the language (type) and the task at hand, as well as on the amount of available data for training the embeddings and task-based models, where having sufficient in-task data is a more critical requirement.

pdf bib
When Choosing Plausible Alternatives, Clever Hans can be Clever
Pride Kavumba | Naoya Inoue | Benjamin Heinzerling | Keshav Singh | Paul Reisert | Kentaro Inui
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing

Pretrained language models, such as BERT and RoBERTa, have shown large improvements in the commonsense reasoning benchmark COPA. However, recent work found that many improvements in benchmarks of natural language understanding are not due to models learning the task, but due to their increasing ability to exploit superficial cues, such as tokens that occur more often in the correct answer than the wrong one. Are BERT’s and RoBERTa’s good performance on COPA also caused by this? We find superficial cues in COPA, as well as evidence that BERT exploits these cues. To remedy this problem, we introduce Balanced COPA, an extension of COPA that does not suffer from easy-to-exploit single token cues. We analyze BERT’s and RoBERTa’s performance on original and Balanced COPA, finding that BERT relies on superficial cues when they are present, but still achieves comparable performance once they are made ineffective, suggesting that BERT learns the task to a certain degree when forced to. In contrast, RoBERTa does not appear to rely on superficial cues.

pdf bib
Fine-Grained Entity Typing in Hyperbolic Space
Federico López | Benjamin Heinzerling | Michael Strube
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

How can we represent hierarchical information present in large type inventories for entity typing? We study the suitability of hyperbolic embeddings to capture hierarchical relations between mentions in context and their target types in a shared vector space. We evaluate on two datasets and propose two different techniques to extract hierarchical information from the type inventory: from an expert-generated ontology and by automatically mining the dataset. The hyperbolic model shows improvements in some but not all cases over its Euclidean counterpart. Our analysis suggests that the adequacy of this geometry depends on the granularity of the type inventory and the representation of its distribution.

2018

pdf bib
BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages
Benjamin Heinzerling | Michael Strube
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2017

pdf bib
Revisiting Selectional Preferences for Coreference Resolution
Benjamin Heinzerling | Nafise Sadat Moosavi | Michael Strube
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Selectional preferences have long been claimed to be essential for coreference resolution. However, they are modeled only implicitly by current coreference resolvers. We propose a dependency-based embedding model of selectional preferences which allows fine-grained compatibility judgments with high coverage. Incorporating our model improves performance, matching state-of-the-art results of a more complex system. However, it comes with a cost that makes it debatable how worthwhile are such improvements.

pdf bib
Trust, but Verify! Better Entity Linking through Automatic Verification
Benjamin Heinzerling | Michael Strube | Chin-Yew Lin
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

We introduce automatic verification as a post-processing step for entity linking (EL). The proposed method trusts EL system results collectively, by assuming entity mentions are mostly linked correctly, in order to create a semantic profile of the given text using geospatial and temporal information, as well as fine-grained entity types. This profile is then used to automatically verify each linked mention individually, i.e., to predict whether it has been linked correctly or not. Verification allows leveraging a rich set of global and pairwise features that would be prohibitively expensive for EL systems employing global inference. Evaluation shows consistent improvements across datasets and systems. In particular, when applied to state-of-the-art systems, our method yields an absolute improvement in linking performance of up to 1.7 F1 on AIDA/CoNLL’03 and up to 2.4 F1 on the English TAC KBP 2015 TEDL dataset.

2015

pdf bib
Visual Error Analysis for Entity Linking
Benjamin Heinzerling | Michael Strube
Proceedings of ACL-IJCNLP 2015 System Demonstrations