Benjamin Hoover


2023

pdf bib
DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models
Zijie J. Wang | Evan Montoya | David Munechika | Haoyang Yang | Benjamin Hoover | Duen Horng Chau
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With recent advancements in diffusion models, users can generate high-quality images by writing text prompts in natural language. However, generating images with desired details requires proper prompts, and it is often unclear how a model reacts to different prompts or what the best prompts are. To help researchers tackle these critical challenges, we introduce DiffusionDB, the first large-scale text-to-image prompt dataset totaling 6.5TB, containing 14 million images generated by Stable Diffusion, 1.8 million unique prompts, and hyperparameters specified by real users. We analyze the syntactic and semantic characteristics of prompts. We pinpoint specific hyperparameter values and prompt styles that can lead to model errors and present evidence of potentially harmful model usage, such as the generation of misinformation. The unprecedented scale and diversity of this human-actuated dataset provide exciting research opportunities in understanding the interplay between prompts and generative models, detecting deepfakes, and designing human-AI interaction tools to help users more easily use these models. DiffusionDB is publicly available at: https://poloclub.github.io/diffusiondb.

2021

pdf bib
LMdiff: A Visual Diff Tool to Compare Language Models
Hendrik Strobelt | Benjamin Hoover | Arvind Satyanaryan | Sebastian Gehrmann
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

While different language models are ubiquitous in NLP, it is hard to contrast their outputs and identify which contexts one can handle better than the other. To address this question, we introduce LMdiff, a tool that visually compares probability distributions of two models that differ, e.g., through finetuning, distillation, or simply training with different parameter sizes. LMdiff allows the generation of hypotheses about model behavior by investigating text instances token by token and further assists in choosing these interesting text instances by identifying the most interesting phrases from large corpora. We showcase the applicability of LMdiff for hypothesis generation across multiple case studies. A demo is available at http://lmdiff.net .

2020

pdf bib
exBERT: A Visual Analysis Tool to Explore Learned Representations in Transformer Models
Benjamin Hoover | Hendrik Strobelt | Sebastian Gehrmann
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Large Transformer-based language models can route and reshape complex information via their multi-headed attention mechanism. Although the attention never receives explicit supervision, it can exhibit recognizable patterns following linguistic or positional information. Analyzing the learned representations and attentions is paramount to furthering our understanding of the inner workings of these models. However, analyses have to catch up with the rapid release of new models and the growing diversity of investigation techniques. To support analysis for a wide variety of models, we introduce exBERT, a tool to help humans conduct flexible, interactive investigations and formulate hypotheses for the model-internal reasoning process. exBERT provides insights into the meaning of the contextual representations and attention by matching a human-specified input to similar contexts in large annotated datasets. By aggregating the annotations of the matched contexts, exBERT can quickly replicate findings from literature and extend them to previously not analyzed models.