Benjamin Kane


2022

pdf bib
A System For Robot Concept Learning Through Situated Dialogue
Benjamin Kane | Felix Gervits | Matthias Scheutz | Matthew Marge
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Robots operating in unexplored environments with human teammates will need to learn unknown concepts on the fly. To this end, we demonstrate a novel system that combines a computational model of question generation with a cognitive robotic architecture. The model supports dynamic production of back-and-forth dialogue for concept learning given observations of an environment, while the architecture supports symbolic reasoning, action representation, one-shot learning and other capabilities for situated interaction. The system is able to learn about new concepts including objects, locations, and actions, using an underlying approach that is generalizable and scalable. We evaluate the system by comparing learning efficiency to a human baseline in a collaborative reference resolution task and show that the system is effective and efficient in learning new concepts, and that it can informatively generate explanations about its behavior.

2021

pdf bib
Generating Justifications in a Spatial Question-Answering Dialogue System for a Blocks World
Georgiy Platonov | Benjamin Kane | Lenhart Schubert
Proceedings of the Reasoning and Interaction Conference (ReInAct 2021)

As AI reaches wider adoption, designing systems that are explainable and interpretable becomes a critical necessity. In particular, when it comes to dialogue systems, their reasoning must be transparent and must comply with human intuitions in order for them to be integrated seamlessly into day-to-day collaborative human-machine activities. Here, we describe our ongoing work on a (general purpose) dialogue system equipped with a spatial specialist with explanatory capabilities. We applied this system to a particular task of characterizing spatial configurations of blocks in a simple physical Blocks World (BW) domain using natural locative expressions, as well as generating justifications for the proposed spatial descriptions by indicating the factors that the system used to arrive at a particular conclusion.

2020

pdf bib
A Spoken Dialogue System for Spatial Question Answering in a Physical Blocks World
Georgiy Platonov | Lenhart Schubert | Benjamin Kane | Aaron Gindi
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue

A physical blocks world, despite its relative simplicity, requires (in fully interactive form) a rich set of functional capabilities, ranging from vision to natural language understanding. In this work we tackle spatial question answering in a holistic way, using a vision system, speech input and output mediated by an animated avatar, a dialogue system that robustly interprets spatial queries, and a constraint solver that derives answers based on 3-D spatial modeling. The contributions of this work include a semantic parser that maps spatial questions into logical forms consistent with a general approach to meaning representation, a dialogue manager based on a schema representation, and a constraint solver for spatial questions that provides answers in agreement with human perception. These and other components are integrated into a multi-modal human-computer interaction pipeline.

pdf bib
Natural Language Inference with Mixed Effects
William Gantt | Benjamin Kane | Aaron Steven White
Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics

There is growing evidence that the prevalence of disagreement in the raw annotations used to construct natural language inference datasets makes the common practice of aggregating those annotations to a single label problematic. We propose a generic method that allows one to skip the aggregation step and train on the raw annotations directly without subjecting the model to unwanted noise that can arise from annotator response biases. We demonstrate that this method, which generalizes the notion of a mixed effects model by incorporating annotator random effects into any existing neural model, improves performance over models that do not incorporate such effects.

2019

pdf bib
Generating Discourse Inferences from Unscoped Episodic Logical Formulas
Gene Kim | Benjamin Kane | Viet Duong | Muskaan Mendiratta | Graeme McGuire | Sophie Sackstein | Georgiy Platonov | Lenhart Schubert
Proceedings of the First International Workshop on Designing Meaning Representations

Abstract Unscoped episodic logical form (ULF) is a semantic representation capturing the predicate-argument structure of English within the episodic logic formalism in relation to the syntactic structure, while leaving scope, word sense, and anaphora unresolved. We describe how ULF can be used to generate natural language inferences that are grounded in the semantic and syntactic structure through a small set of rules defined over interpretable predicates and transformations on ULFs. The semantic restrictions placed by ULF semantic types enables us to ensure that the inferred structures are semantically coherent while the nearness to syntax enables accurate mapping to English. We demonstrate these inferences on four classes of conversationally-oriented inferences in a mixed genre dataset with 68.5% precision from human judgments.