We focus on the syntactic variation and measure syntactic distances between nine Slavic languages (Belarusian, Bulgarian, Croatian, Czech, Polish, Slovak, Slovene, Russian, and Ukrainian) using symmetric measures of insertion, deletion and movement of syntactic units in the parallel sentences of the fable “The North Wind and the Sun”. Additionally, we investigate phonetic and orthographic asymmetries between selected languages by means of the information theoretical notion of surprisal. Syntactic distance and surprisal are, thus, considered as potential predictors of mutual intelligibility between related languages. In spoken and written cloze test experiments for Slavic native speakers, the presented predictors will be validated as to whether variations in syntax lead to a slower or impeded intercomprehension of Slavic texts.
We present an extended version of a tool developed for calculating linguistic distances and asymmetries in auditory perception of closely related languages. Along with evaluating the metrics available in the initial version of the tool, we introduce word adaptation entropy as an additional metric of linguistic asymmetry. Potential predictors of speech intelligibility are validated with human performance in spoken cognate recognition experiments for Bulgarian and Russian. Special attention is paid to the possibly different contributions of vowels and consonants in oral intercomprehension. Using incom.py 2.0 it is possible to calculate, visualize, and validate three measurement methods of linguistic distances and asymmetries as well as carrying out regression analyses in speech intelligibility between related languages.
How do neural networks “perceive” speech sounds from unknown languages? Does the typological similarity between the model’s training language (L1) and an unknown language (L2) have an impact on the model representations of L2 speech signals? To answer these questions, we present a novel experimental design based on representational similarity analysis (RSA) to analyze acoustic word embeddings (AWEs)—vector representations of variable-duration spoken-word segments. First, we train monolingual AWE models on seven Indo-European languages with various degrees of typological similarity. We then employ RSA to quantify the cross-lingual similarity by simulating native and non-native spoken-word processing using AWEs. Our experiments show that typological similarity indeed affects the representational similarity of the models in our study. We further discuss the implications of our work on modeling speech processing and language similarity with neural networks.
Deep neural networks have been employed for various spoken language recognition tasks, including tasks that are multilingual by definition such as spoken language identification (LID). In this paper, we present a neural model for Slavic language identification in speech signals and analyze its emergent representations to investigate whether they reflect objective measures of language relatedness or non-linguists’ perception of language similarity. While our analysis shows that the language representation space indeed captures language relatedness to a great extent, we find perceptual confusability to be the best predictor of the language representation similarity.
The IFCASL corpus is a French-German bilingual phonetic learner corpus designed, recorded and annotated in a project on individualized feedback in computer-assisted spoken language learning. The motivation for setting up this corpus was that there is no phonetically annotated and segmented corpus for this language pair of comparable of size and coverage. In contrast to most learner corpora, the IFCASL corpus incorporate data for a language pair in both directions, i.e. in our case French learners of German, and German learners of French. In addition, the corpus is complemented by two sub-corpora of native speech by the same speakers. The corpus provides spoken data by about 100 speakers with comparable productions, annotated and segmented on the word and the phone level, with more than 50% manually corrected data. The paper reports on inter-annotator agreement and the optimization of the acoustic models for forced speech-text alignment in exercises for computer-assisted pronunciation training. Example studies based on the corpus data with a phonetic focus include topics such as the realization of /h/ and glottal stop, final devoicing of obstruents, vowel quantity and quality, pitch range, and tempo.
We present the design of a corpus of native and non-native speech for the language pair French-German, with a special emphasis on phonetic and prosodic aspects. To our knowledge there is no suitable corpus, in terms of size and coverage, currently available for the target language pair. To select the target L1-L2 interference phenomena we prepare a small preliminary corpus (corpus1), which is analyzed for coverage and cross-checked jointly by French and German experts. Based on this analysis, target phenomena on the phonetic and phonological level are selected on the basis of the expected degree of deviation from the native performance and the frequency of occurrence. 14 speakers performed both L2 (either French or German) and L1 material (either German or French). This allowed us to test, recordings duration, recordings material, the performance of our automatic aligner software. Then, we built corpus2 taking into account what we learned about corpus1. The aims are the same but we adapted speech material to avoid too long recording sessions. 100 speakers will be recorded. The corpus (corpus1 and corpus2) will be prepared as a searchable database, available for the scientific community after completion of the project.