Berta Chulvi
2022
Multi-Aspect Transfer Learning for Detecting Low Resource Mental Disorders on Social Media
Ana Sabina Uban
|
Berta Chulvi
|
Paolo Rosso
Proceedings of the Thirteenth Language Resources and Evaluation Conference
Mental disorders are a serious and increasingly relevant public health issue. NLP methods have the potential to assist with automatic mental health disorder detection, but building annotated datasets for this task can be challenging; moreover, annotated data is very scarce for disorders other than depression. Understanding the commonalities between certain disorders is also important for clinicians who face the problem of shifting standards of diagnosis. We propose that transfer learning with linguistic features can be useful for approaching both the technical problem of improving mental disorder detection in the context of data scarcity, and the clinical problem of understanding the overlapping symptoms between certain disorders. In this paper, we target four disorders: depression, PTSD, anorexia and self-harm. We explore multi-aspect transfer learning for detecting mental disorders from social media texts, using deep learning models with multi-aspect representations of language (including multiple types of interpretable linguistic features). We explore different transfer learning strategies for cross-disorder and cross-platform transfer, and show that transfer learning can be effective for improving prediction performance for disorders where little annotated data is available. We offer insights into which linguistic features are the most useful vehicles for transferring knowledge, through ablation experiments, as well as error analysis.
SemEval-2022 Task 5: Multimedia Automatic Misogyny Identification
Elisabetta Fersini
|
Francesca Gasparini
|
Giulia Rizzi
|
Aurora Saibene
|
Berta Chulvi
|
Paolo Rosso
|
Alyssa Lees
|
Jeffrey Sorensen
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
The paper describes the SemEval-2022 Task 5: Multimedia Automatic Misogyny Identification (MAMI),which explores the detection of misogynous memes on the web by taking advantage of available texts and images. The task has been organised in two related sub-tasks: the first one is focused on recognising whether a meme is misogynous or not (Sub-task A), while the second one is devoted to recognising types of misogyny (Sub-task B). MAMI has been one of the most popular tasks at SemEval-2022 with more than 400 participants, 65 teams involved in Sub-task A and 41 in Sub-task B from 13 countries. The MAMI challenge received 4214 submitted runs (of which 166 uploaded on the leader-board), denoting an enthusiastic participation for the proposed problem. The collection and annotation is described for the task dataset. The paper provides an overview of the systems proposed for the challenge, reports the results achieved in both sub-tasks and outlines a description of the main errors for a comprehension of the systems capabilities and for detailing future research perspectives.
2021
Understanding Patterns of Anorexia Manifestations in Social Media Data with Deep Learning
Ana Sabina Uban
|
Berta Chulvi
|
Paolo Rosso
Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access
Eating disorders are a growing problem especially among young people, yet they have been under-studied in computational research compared to other mental health disorders such as depression. Computational methods have a great potential to aid with the automatic detection of mental health problems, but state-of-the-art machine learning methods based on neural networks are notoriously difficult to interpret, which is a crucial problem for applications in the mental health domain. We propose leveraging the power of deep learning models for automatically detecting signs of anorexia based on social media data, while at the same time focusing on interpreting their behavior. We train a hierarchical attention network to detect people with anorexia and use its internal encodings to discover different clusters of anorexia symptoms. We interpret the identified patterns from multiple perspectives, including emotion expression, psycho-linguistic features and personality traits, and we offer novel hypotheses to interpret our findings from a psycho-social perspective. Some interesting findings are patterns of word usage in some users with anorexia which show that they feel less as being part of a group compared to control cases, as well as that they have abandoned explanatory activity as a result of a greater feeling of helplessness and fear.
Search
Fix data
Co-authors
- Paolo Rosso 3
- Ana Sabina Uban 2
- Elisabetta Fersini 1
- Francesca Gasparini 1
- Alyssa Lees 1
- show all...