Bhavyajeet Singh


2023

pdf bib
Cross-Lingual Fact Checking: Automated Extraction and Verification of Information from Wikipedia using References
Shivansh Subramanian | Ankita Maity | Aakash Jain | Bhavyajeet Singh | Harshit Gupta | Lakshya Khanna | Vasudeva Varma
Proceedings of the 20th International Conference on Natural Language Processing (ICON)

pdf bib
XF2T: Cross-lingual Fact-to-Text Generation for Low-Resource Languages
Shivprasad Sagare | Tushar Abhishek | Bhavyajeet Singh | Anubhav Sharma | Manish Gupta | Vasudeva Varma
Proceedings of the 16th International Natural Language Generation Conference

Multiple business scenarios require an automated generation of descriptive human-readable text from structured input data. This has resulted into substantial work on fact-to-text generation systems recently. Unfortunately, previous work on fact-to-text (F2T) generation has focused primarily on English mainly due to the high availability of relevant datasets. Only recently, the problem of cross-lingual fact-to-text (XF2T) was proposed for generation across multiple languages alongwith a dataset, XAlign for eight languages. However, there has been no rigorous work on the actual XF2T generation problem. We extend XAlign dataset with annotated data for four more languages: Punjabi, Malayalam, Assamese and Oriya. We conduct an extensive study using popular Transformer-based text generation models on our extended multi-lingual dataset, which we call XAlignV2. Further, we investigate the performance of different text generation strategies: multiple variations of pretraining, fact-aware embeddings and structure-aware input encoding. Our extensive experiments show that a multi-lingual mT5 model which uses fact-aware embeddings with structure-aware input encoding leads to best results (30.90 BLEU, 55.12 METEOR and 59.17 chrF++) across the twelve languages. We make our code, dataset and model publicly available, and hope that this will help advance further research in this critical area.

pdf bib
WebNLG Challenge 2023: Domain Adaptive Machine Translation for Low-Resource Multilingual RDF-to-Text Generation (WebNLG 2023)
Kancharla Aditya Hari | Bhavyajeet Singh | Anubhav Sharma | Vasudeva Varma
Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG Challenge (MM-NLG 2023)

This paper presents our submission to the WebNLG Challenge 2023 for generating text in several low-resource languages from RDF-triples. Our submission focuses on using machine translation for generating texts in Irish, Maltese, Welsh and Russian. While a simple and straightfoward approach, recent works have shown that using monolingual models for inference for multilingual tasks with the help of machine translation (translate-test) can out-perform multilingual models and training multilingual models on machine-translated data (translate-train) through careful tuning of the MT component. Our results show that this approach demonstrates competitive performance for this task even with limited data.

pdf bib
iREL at SemEval-2023 Task 9: Improving understanding of multilingual Tweets using Translation-Based Augmentation and Domain Adapted Pre-Trained Models
Bhavyajeet Singh | Ankita Maity | Pavan Kandru | Aditya Hari | Vasudeva Varma
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper describes our system (iREL) for Tweet intimacy analysis sharedtask of the SemEval 2023 workshop at ACL 2023. Oursystem achieved an overall Pearson’s r score of 0.5924 and ranked 10th on the overall leaderboard. For the unseen languages, we ranked third on the leaderboard and achieved a Pearson’s r score of 0.485. We used a single multilingual model for all languages, as discussed in this paper. We provide a detailed description of our pipeline along with multiple ablation experiments to further analyse each component of the pipeline. We demonstrate how translation-based augmentation, domain-specific features, and domain-adapted pre-trained models improve the understanding of intimacy in tweets. The codecan be found at \href{https://github.com/bhavyajeet/Multilingual-tweet-intimacy}{https://github.com/bhavyajeet/Multilingual-tweet-intimacy}

pdf bib
Tenzin-Gyatso at SemEval-2023 Task 4: Identifying Human Values behind Arguments Using DeBERTa
Pavan Kandru | Bhavyajeet Singh | Ankita Maity | Kancharla Aditya Hari | Vasudeva Varma
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

Identifying human values behind arguments isa complex task which requires understandingof premise, stance and conclusion together. Wepropose a method that uses a pre-trained lan-guage model, DeBERTa, to tokenize and con-catenate the text before feeding it into a fullyconnected neural network. We also show thatleveraging the hierarchy in values improves theperformance by .14 F1 score.

pdf bib
IREL at SemEval-2023 Task 11: User Conditioned Modelling for Toxicity Detection in Subjective Tasks
Ankita Maity | Pavan Kandru | Bhavyajeet Singh | Kancharla Aditya Hari | Vasudeva Varma
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper describes our system used in the SemEval-2023 Task 11 Learning With Disagreements (Le-Wi-Di). This is a subjective task since it deals with detecting hate speech, misogyny and offensive language. Thus, disagreement among annotators is expected. We experiment with different settings like loss functions specific for subjective tasks and include anonymized annotator-specific information to help us understand the level of disagreement. We perform an in-depth analysis of the performance discrepancy of these different modelling choices. Our system achieves a cross-entropy of 0.58, 4.01 and 3.70 on the test sets of HS-Brexit, ArMIS and MD-Agreement, respectively. Our code implementation is publicly available.

2022

pdf bib
Massively Multilingual Language Models for Cross Lingual Fact Extraction from Low Resource Indian Languages
Bhavyajeet Singh | Siri Venkata Pavan Kumar Kandru | Anubhav Sharma | Vasudeva Varma
Proceedings of the 19th International Conference on Natural Language Processing (ICON)

Massive knowledge graphs like Wikidata attempt to capture world knowledge about multiple entities. Recent approaches concentrate on automatically enriching these KGs from text. However a lot of information present in the form of natural text in low resource languages is often missed out. Cross Lingual Information Extraction aims at extracting factual information in the form of English triples from low resource Indian Language text. Despite its massive potential, progress made on this task is lagging when compared to Monolingual Information Extraction. In this paper, we propose the task of Cross Lingual Fact Extraction(CLFE) from text and devise an end-to-end generative approach for the same which achieves an overall F1 score of 77.46

2021

pdf bib
SciBERT Sentence Representation for Citation Context Classification
Himanshu Maheshwari | Bhavyajeet Singh | Vasudeva Varma
Proceedings of the Second Workshop on Scholarly Document Processing

This paper describes our system (IREL) for 3C-Citation Context Classification shared task of the Scholarly Document Processing Workshop at NAACL 2021. We participated in both subtask A and subtask B. Our best system achieved a Macro F1 score of 0.26973 on the private leaderboard for subtask A and was ranked one. For subtask B our best system achieved a Macro F1 score of 0.59071 on the private leaderboard and was ranked two. We used similar models for both the subtasks with some minor changes, as discussed in this paper. Our best performing model for both the subtask was a finetuned SciBert model followed by a linear layer. This paper provides a detailed description of all the approaches we tried and their results.