Biao Fu

Also published as:


2024

pdf bib
Multi-Level Cross-Modal Alignment for Speech Relation Extraction
Liang Zhang | Zhen Yang | Biao Fu | Ziyao Lu | Liangying Shao | Shiyu Liu | Fandong Meng | Jie Zhou | Xiaoli Wang | Jinsong Su
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Speech Relation Extraction (SpeechRE) aims to extract relation triplets from speech data. However, existing studies usually use synthetic speech to train and evaluate SpeechRE models, hindering the further development of SpeechRE due to the disparity between synthetic and real speech. Meanwhile, the modality gap issue, unexplored in SpeechRE, limits the performance of existing models. In this paper, we construct two real SpeechRE datasets to facilitate subsequent researches and propose a Multi-level Cross-modal Alignment Model (MCAM) for SpeechRE. Our model consists of three components: 1) a speech encoder, extracting speech features from the input speech; 2) an alignment adapter, mapping these speech features into a suitable semantic space for the text decoder; and 3) a text decoder, autoregressively generating relation triplets based on the speech features. During training, we first additionally introduce a text encoder to serve as a semantic bridge between the speech encoder and the text decoder, and then train the alignment adapter to align the output features of speech and text encoders at multiple levels. In this way, we can effectively train the alignment adapter to bridge the modality gap between the speech encoder and the text decoder. Experimental results and in-depth analysis on our datasets strongly demonstrate the efficacy of our method.

pdf bib
Signer Diversity-driven Data Augmentation for Signer-Independent Sign Language Translation
Honghao Fu | Liang Zhang | Biao Fu | Rui Zhao | Jinsong Su | Xiaodong Shi | Yidong Chen
Findings of the Association for Computational Linguistics: NAACL 2024

The primary objective of sign language translation (SLT) is to transform sign language videos into natural sentences.A crucial challenge in this field is developing signer-independent SLT systems which requires models to generalize effectively to signers not encountered during training.This challenge is exacerbated by the limited diversity of signers in existing SLT datasets, which often results in suboptimal generalization capabilities of current models.Achieving robustness to unseen signers is essential for signer-independent SLT.However, most existing method relies on signer identity labels, which is often impractical and costly in real-world applications.To address this issue, we propose the Signer Diversity-driven Data Augmentation (SDDA) method that can achieve good generalization without relying on signer identity labels. SDDA comprises two data augmentation schemes. The first is data augmentation based on adversarial training, which aims to utilize the gradients of the model to generate adversarial examples. The second is data augmentation based on diffusion model, which focuses on using the advanced diffusion-based text guided image editing method to modify the appearances of the signer in images. The combination of the two strategies significantly enriches the diversity of signers in the training process.Moreover, we introduce a consistency loss and a discrimination loss to enhance the learning of signer-independent features.Our experimental results demonstrate our model significantly enhances the performance of SLT in the signer-independent setting, achieving state-of-the-art results without relying on signer identity labels.

pdf bib
wav2vec-S: Adapting Pre-trained Speech Models for Streaming
Biao Fu | Kai Fan | Minpeng Liao | Yidong Chen | Xiaodong Shi | Zhongqiang Huang
Findings of the Association for Computational Linguistics: ACL 2024

Pre-trained speech models, such as wav2vec 2.0, have significantly advanced speech-related tasks, including speech recognition and translation. However, their applicability in streaming scenarios is limited because these models are trained on complete utterances, leading to a mismatch with incremental streaming inputs. This paper identifies three critical design aspects within the architecture of wav2vec 2.0 and proposes a novel model, wav2vec-S, which incorporates simple modifications to ensure consistent speech representations during both training and inference phases for streaming speech inputs. Furthermore, we demonstrate that wav2vec-S models can be efficiently adapted from pre-trained wav2vec 2.0 models through continued pre-training and effectively finetuned to meet various latency requirements in downstream applications. Experiments on speech recognition and translation tasks show that wav2vec-S outperforms strong baseline models and achieves a superior balance between quality and latency.

pdf bib
Adaptive Simultaneous Sign Language Translation with Confident Translation Length Estimation
Tong Sun | Biao Fu | Cong Hu | Liang Zhang | Ruiquan Zhang | Xiaodong Shi | Jinsong Su | Yidong Chen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Traditional non-simultaneous Sign Language Translation (SLT) methods, while effective for pre-recorded videos, face challenges in real-time scenarios due to inherent inference delays. The emerging field of simultaneous SLT aims to address this issue by progressively translating incrementally received sign video. However, the sole existing work in simultaneous SLT adopts a fixed gloss-based policy, which suffer from limitations in boundary prediction and contextual comprehension. In this paper, we delve deeper into this area and propose an adaptive policy for simultaneous SLT. Our approach introduces the concept of “confident translation length”, denoting maximum accurate translation achievable from current input. An estimator measures this length for streaming sign video, enabling the model to make informed decisions on whether to wait for more input or proceed with translation. To train the estimator, we construct a training data of confident translation length based on the longest common prefix between translations of partial and complete inputs. Furthermore, we incorporate adaptive training, utilizing pseudo prefix pairs, to refine the offline translation model for optimal performance in simultaneous scenarios. Experimental results on PHOENIX2014T and CSL-Daily demonstrate the superiority of our adaptive policy over existing methods, particularly excelling in situations requiring extremely low latency.

2023

pdf bib
Adapting Offline Speech Translation Models for Streaming with Future-Aware Distillation and Inference
Biao Fu | Minpeng Liao | Kai Fan | Zhongqiang Huang | Boxing Chen | Yidong Chen | Xiaodong Shi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

A popular approach to streaming speech translation is to employ a single offline model with a wait-k policy to support different latency requirements, which is simpler than training multiple online models with different latency constraints. However, there is a mismatch problem in using a model trained with complete utterances for streaming inference with partial input. We demonstrate that speech representations extracted at the end of a streaming input are significantly different from those extracted from a complete utterance. To address this issue, we propose a new approach called Future-Aware Streaming Translation (FAST) that adapts an offline ST model for streaming input. FAST includes a Future-Aware Inference (FAI) strategy that incorporates future context through a trainable masked embedding, and a Future-Aware Distillation (FAD) framework that transfers future context from an approximation of full speech to streaming input. Our experiments on the MuST-C EnDe, EnEs, and EnFr benchmarks show that FAST achieves better trade-offs between translation quality and latency than strong baselines. Extensive analyses suggest that our methods effectively alleviate the aforementioned mismatch problem between offline training and online inference.

pdf bib
Learning to Compose Representations of Different Encoder Layers towards Improving Compositional Generalization
Lei Lin | Shuangtao Li | Yafang Zheng | Biao Fu | Shan Liu | Yidong Chen | Xiaodong Shi
Findings of the Association for Computational Linguistics: EMNLP 2023

Recent studies have shown that sequence-to-sequence (seq2seq) models struggle with compositional generalization (CG), i.e., the ability to systematically generalize to unseen compositions of seen components. There is mounting evidence that one of the reasons hindering CG is the representation of the encoder uppermost layer is entangled, i.e., the syntactic and semantic representations of sequences are entangled. However, we consider that the previously identified representation entanglement problem is not comprehensive enough. Additionally, we hypothesize that the source keys and values representations passing into different decoder layers are also entangled. Starting from this intuition, we propose CompoSition (Compose Syntactic and Semantic Representations), an extension to seq2seq models which learns to compose representations of different encoder layers dynamically for different tasks, since recent studies reveal that the bottom layers of the Transformer encoder contain more syntactic information and the top ones contain more semantic information. Specifically, we introduce a composed layer between the encoder and decoder to compose different encoder layers’ representations to generate specific keys and values passing into different decoder layers. CompoSition achieves competitive results on two comprehensive and realistic benchmarks, which empirically demonstrates the effectiveness of our proposal. Codes are available at https://github.com/thinkaboutzero/COMPOSITION.

2021

pdf bib
一种基于IDLSTM+CRF的中文主地域抽取方法(A Chinese Main Location Extraction Method based on IDLSTM+CRF)
Yiqi Tong (童逸琦) | Peigen Ye (叶培根) | Biao Fu (付彪) | Yidong Chen (陈毅东) | Xiaodong Shi (史晓东)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

新闻文本通常会涉及多个地域,主地域则描述了文本舆情内容的地域属性,是进行舆情分析的关键属性。目前深度学习领域针对主地域自动抽取的研究还比较少。基于此,本文构建了一个基于IDLSTM+CRF的主地域抽取系统。该系统通过地名识别、主地域抽取、主地域补全三大模块实现对主地域标签的自动抽取和补全。在公开数据集上的实验结果表明,我们的方法在地名识别任务上要优于BiLSTM+CRF等模型。而对于主地域抽取任务,目前还没有标准的中文主地域评测集合。针对该问题,我们标注并开源了1226条验证集和1500条测试集。最终,我们的主地域抽取系统在两个集合上分别取得了91.7%和84.8%的抽取准确率,并成功运用于线上生产环境。