Bimal Bhattarai
2024
Tsetlin Machine Embedding: Representing Words Using Logical Expressions
Bimal Bhattarai
|
Ole-Christoffer Granmo
|
Lei Jiao
|
Rohan Yadav
|
Jivitesh Sharma
Findings of the Association for Computational Linguistics: EACL 2024
2022
ConvTextTM: An Explainable Convolutional Tsetlin Machine Framework for Text Classification
Bimal Bhattarai
|
Ole-Christoffer Granmo
|
Lei Jiao
Proceedings of the Thirteenth Language Resources and Evaluation Conference
Recent advancements in natural language processing (NLP) have reshaped the industry, with powerful language models such as GPT-3 achieving superhuman performance on various tasks. However, the increasing complexity of such models turns them into “black boxes”, creating uncertainty about their internal operation and decision-making. Tsetlin Machine (TM) employs human-interpretable conjunctive clauses in propositional logic to solve complex pattern recognition problems and has demonstrated competitive performance in various NLP tasks. In this paper, we propose ConvTextTM, a novel convolutional TM architecture for text classification. While legacy TM solutions treat the whole text as a corpus-specific set-of-words (SOW), ConvTextTM breaks down the text into a sequence of text fragments. The convolution over the text fragments opens up for local position-aware analysis. Further, ConvTextTM eliminates the dependency on a corpus-specific vocabulary. Instead, it employs a generic SOW formed by the tokenization scheme of the Bidirectional Encoder Representations from Transformers (BERT). The convolution binds together the tokens, allowing ConvTextTM to address the out-of-vocabulary problem as well as spelling errors. We investigate the local explainability of our proposed method using clause-based features. Extensive experiments are conducted on seven datasets, to demonstrate that the accuracy of ConvTextTM is either superior or comparable to state-of-the-art baselines.
Explainable Tsetlin Machine Framework for Fake News Detection with Credibility Score Assessment
Bimal Bhattarai
|
Ole-Christoffer Granmo
|
Lei Jiao
Proceedings of the Thirteenth Language Resources and Evaluation Conference
The proliferation of fake news, i.e., news intentionally spread for misinformation, poses a threat to individuals and society. Despite various fact-checking websites such as PolitiFact, robust detection techniques are required to deal with the increase in fake news. Several deep learning models show promising results for fake news classification, however, their black-box nature makes it difficult to explain their classification decisions and quality-assure the models. We here address this problem by proposing a novel interpretable fake news detection framework based on the recently introduced Tsetlin Machine (TM). In brief, we utilize the conjunctive clauses of the TM to capture lexical and semantic properties of both true and fake news text. Further, we use clause ensembles to calculate the credibility of fake news. For evaluation, we conduct experiments on two publicly available datasets, PolitiFact and GossipCop, and demonstrate that the TM framework significantly outperforms previously published baselines by at least 5% in terms of accuracy, with the added benefit of an interpretable logic-based representation. In addition, our approach provides a higher F1-score than BERT and XLNet, however, we obtain slightly lower accuracy. We finally present a case study on our model’s explainability, demonstrating how it decomposes into meaningful words and their negations.