Biman Gujral
2019
Deep Generalized Canonical Correlation Analysis
Adrian Benton
|
Huda Khayrallah
|
Biman Gujral
|
Dee Ann Reisinger
|
Sheng Zhang
|
Raman Arora
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)
We present Deep Generalized Canonical Correlation Analysis (DGCCA) – a method for learning nonlinear transformations of arbitrarily many views of data, such that the resulting transformations are maximally informative of each other. While methods for nonlinear two view representation learning (Deep CCA, (Andrew et al., 2013)) and linear many-view representation learning (Generalized CCA (Horst, 1961)) exist, DGCCA combines the flexibility of nonlinear (deep) representation learning with the statistical power of incorporating information from many sources, or views. We present the DGCCA formulation as well as an efficient stochastic optimization algorithm for solving it. We learn and evaluate DGCCA representations for three downstream tasks: phonetic transcription from acoustic & articulatory measurements, recommending hashtags and recommending friends on a dataset of Twitter users.
2016
Translation of Unknown Words in Low Resource Languages
Biman Gujral
|
Huda Khayrallah
|
Philipp Koehn
Conferences of the Association for Machine Translation in the Americas: MT Researchers' Track
Search
Fix data
Co-authors
- Huda Khayrallah 2
- Raman Arora 1
- Adrian Benton 1
- Philipp Koehn 1
- Dee Ann Reisinger 1
- show all...