Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, through a collaborative movement, we introduce SEACrowd, a comprehensive resource center that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in Southeast Asia.
Recently, tool-augmented LLMs have gained increasing attention. Given an instruction, tool-augmented LLMs can interact with various external tools in multiple rounds and provide a final answer. However, previous LLMs were trained on overly detailed instructions, which included API names or parameters, while real users would not explicitly mention these API details. This leads to a gap between trained LLMs and real-world scenarios. In addition, most works ignore whether the interaction process follows the instruction. To address these issues, we constructed a training dataset called MGToolBench, which contains statement and category-level instructions to better reflect real-world scenarios. In addition, we propose ToolPlanner, a two-stage reinforcement learning framework that utilizes path planning and two feedback mechanisms to enhance the LLM’s task completion and instruction-following capabilities. Experimental results show that ToolPlanner significantly improves the Match Rate, Pass Rate and Win Rate by 26.8%, 20.2%, and 5.6% compared to the SOTA model. Human evaluation verifies that the multi-granularity instructions can better align with users’ usage habits. Our data and code will be released upon acceptance.
The Sparsely-Activated Mixture-of-Experts (MoE) architecture has gained popularity for scaling large language models (LLMs) due to the sub-linearly increasing computational costs. Despite its success, most of the current structure designs face the challenge that the experts share the same size such that tokens have no chance to choose the experts with the most appropriate size to generate the next token. To migrate this defect, we propose Mixture of Diverse Size Experts (MoDSE), a new MoE architecture with designed layers where experts have different sizes. Analysis on difficult token generation tasks shows that experts with different sizes give better predictions, and the routing path of the experts tends to be stable after a period of training. The diversity of experts’ size will lead to load unbalancing. To tackle this limitation, we introduce an expert-pair allocation strategy to distribute the workload evenly across the GPUs. Comprehensive evaluations across multiple benchmarks demonstrate the effectiveness of MoDSE, surpassing existing MoEs by adaptively assigning the parameter budget to experts while maintaining the same total parameter size and number of experts.
Large language models (LLMs) have rapidly evolved as the foundation of various natural language processing (NLP) applications. Despite their wide use cases, their understanding of culturally-related concepts and reasoning remains limited. Meantime, there is a significant need to enhance these models’ cultural reasoning capabilities, especially concerning underrepresented regions. This paper introduces a novel pipeline for extracting high-quality, culturally-related instruction tuning datasets from vast unstructured corpora. We utilize a self-instruction generation pipeline to identify cultural concepts and trigger instruction. By integrating with a general-purpose instruction tuning dataset, our model demonstrates enhanced capabilities in recognizing and understanding regional cultural nuances, thereby enhancing its reasoning capabilities. We conduct experiments across three regions: Singapore, the Philippines, and the United States, achieving performance improvement of up to 6%. Our research opens new avenues for extracting cultural instruction tuning sets directly from unstructured data, setting a precedent for future innovations in the field.
Structured pruning fundamentally reduces computational and memory overheads of large language models (LLMs) and offers a feasible solution for end-side LLM deployment. Structurally pruned models remain dense and high-precision, highly compatible with further tuning and compression. However, as the coarse-grained structured pruning poses large damage to the highly interconnected model, achieving a high compression ratio for scaled-up LLMs remains a challenge. In this paper, we introduce a task-agnostic structured pruning approach coupled with a compact Transformer architecture design. The proposed approach, named TransAct, reduces transitional activations inside multi-head attention (MHA) and multi-layer perceptron (MLP) modules, while preserving the inter-module activations that are sensitive to perturbations. Hence, the LLM is pruned into an intra-module low-rank architecture, significantly reducing weights, KV Cache and attention computation. TransAct is implemented on the LLaMA model and evaluated on downstream benchmarks. Results verify the optimality of our approach at high compression with respect to both efficiency and performance. Further, ablation studies reveal the strength of activation-guided iterative pruning and provide experimental analysis on the redundancy of MHA and MLP modules.
Increasing the number of parameters in large language models (LLMs) usually improves performance in downstream tasks but raises compute and memory costs, making deployment difficult in resource-limited settings. Quantization techniques, which reduce the bits needed for model weights or activations with minimal performance loss, have become popular due to the rise of LLMs. However, most quantization studies use pre-trained LLMs, and the impact of quantization on instruction-tuned LLMs and the relationship between perplexity and benchmark performance of quantized LLMs are not well understood. Evaluation of quantized LLMs is often limited to language modeling and a few classification tasks, leaving their performance on other benchmarks unclear. To address these gaps, we propose a structured evaluation framework consisting of three critical dimensions: (1) knowledge & capacity, (2) alignment, and (3) efficiency, and conduct extensive experiments across ten diverse benchmarks. Our experimental results indicate that LLMs with 4-bit quantization can retain performance comparable to their non-quantized counterparts, and perplexity can serve as a proxy metric for quantized LLMs on most benchmarks. Furthermore, quantized LLMs with larger parameter scales can outperform smaller LLMs. Despite the memory savings achieved through quantization, it can also slow down the inference speed of LLMs. Consequently, substantial engineering efforts and hardware support are imperative to achieve a balanced optimization of decoding speed and memory consumption in the context of quantized LLMs.
In the field of information extraction (IE), tasks across a wide range of modalities and their combinations have been traditionally studied in isolation, leaving a gap in deeply recognizing and analyzing cross-modal information. To address this, this work for the first time introduces the concept of grounded Multimodal Universal Information Extraction (MUIE), providing a unified task framework to analyze any IE tasks over various modalities, along with their fine-grained groundings. To tackle MUIE, we tailor a multimodal large language model (MLLM), Reamo, capable of extracting and grounding information from all modalities, i.e., recognizing everything from all modalities at once. Reamo is updated via varied tuning strategies, equipping it with powerful capabilities for information recognition and fine-grained multimodal grounding. To address the absence of a suitable benchmark for grounded MUIE, we curate a high-quality, diverse, and challenging test set, which encompasses IE tasks across 9 common modality combinations with the corresponding multimodal groundings. The extensive comparison of Reamo with existing MLLMs integrated into pipeline approaches demonstrates its advantages across all evaluation dimensions, establishing a strong benchmark for the follow-up research. Our resources are publicly released at https://haofei.vip/MUIE.
Recently, mobile AI agents based on VLMs have been gaining increasing attention. These works typically utilize VLM as a foundation, fine-tuning it with instruction-based mobile datasets. However, these VLMs are typically pre-trained on general-domain data, which often results in a lack of fundamental capabilities specific to the mobile domain. Therefore, they may struggle to recognize specific UI elements and understand intra-UI fine-grained information. In addition, the current fine-tuning task focuses on interacting with the most relevant element for the given instruction. These fine-tuned VLMs may still ignore the relationships between UI pages, neglect the roles of elements in page transitions and lack inter-UI understanding. To address issues, we propose a VLM called MobileVLM, which includes two additional pre-training stages to enhance both intra- and inter-UI understanding. We defined four UI-based pre-training tasks, enabling the model to better perceive fine-grained elements and capture page transition actions. To address the lack of mobile pre-training data, we built a large Chinese mobile dataset Mobile3M from scratch, which contains 3 million UI pages, and real-world transition actions, forming a directed graph structure. Experimental results show MobileVLM excels on both our test set and public mobile benchmarks, outperforming existing VLMs.
Despite advancements, fine-tuning Large Language Models (LLMs) remains costly due to the extensive parameter count and substantial data requirements for model generalization. Accessibility to computing resources remains a barrier for the open-source community. To address this challenge, we propose the In2Core algorithm, which selects a coreset by analyzing the correlation between training and evaluation samples with a trained model. Notably, we assess the model’s internal gradients to estimate this relationship, aiming to rank the contribution of each training point. To enhance efficiency, we propose an optimization to compute influence functions with a reduced number of layers while achieving similar accuracy. By applying our algorithm to instruction fine-tuning data of LLMs, we can achieve similar performance with just 50% of the training data. Meantime, using influence functions to analyze model coverage to certain testing samples could provide a reliable and interpretable signal on the training set’s coverage of those test points.
As the rapidly advancing domain of natural language processing (NLP), large language models (LLMs) have emerged as powerful tools for interpreting human commands and generating text across various tasks. Nonetheless, the resilience of LLMs to handle text containing inherent errors, stemming from human interactions and collaborative systems, has not been thoroughly explored. Our study investigates the resilience of LLMs against five common types of disruptions including 1) ASR (Automatic Speech Recognition) errors, 2) OCR (Optical Character Recognition) errors, 3) grammatical mistakes, 4) typographical errors, and 5) distractive content. We aim to investigate how these models react by deliberately embedding these errors into instructions. Our findings reveal that while some LLMs show a degree of resistance to certain types of noise, their overall performance significantly suffers. This emphasizes the importance of further investigation into enhancing model resilience. In response to the observed decline in performance, our study also evaluates a “re-pass” strategy, designed to purify the instructions of noise before the LLMs process them. Our analysis indicates that correcting noisy instructions, particularly for open-source LLMs, presents significant challenges.
We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Many models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained “balanced multilingual” capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.
With the remarkable advancements of large language models (LLMs), LLM-based agents have become a research hotspot in human-computer interaction.However, there is a scarcity of benchmarks available for LLM-based mobile agents.Benchmarking these agents generally faces three main challenges:(1) The inefficiency of UI-only operations imposes limitations to task evaluation.(2) Specific instructions within a singular application lack adequacy for assessing the multi-dimensional reasoning and decision-making capacities of LLM mobile agents.(3) Current evaluation metrics are insufficient to accurately assess the process of sequential actions. To this end, we propose Mobile-Bench, a novel benchmark for evaluating the capabilities of LLM-based mobile agents.First, we expand conventional UI operations by incorporating 103 collected APIs to accelerate the efficiency of task completion.Subsequently, we collect evaluation data by combining real user queries with augmentation from LLMs.To better evaluate different levels of planning capabilities for mobile agents, our data is categorized into three distinct groups: SAST, SAMT, and MAMT, reflecting varying levels of task complexity. Mobile-Bench comprises 832 data entries, with more than 200 tasks specifically designed to evaluate multi-APP collaboration scenarios.Furthermore, we introduce a more accurate evaluation metric, named CheckPoint, to assess whether LLM-based mobile agents reach essential points during their planning and reasoning steps. Dataset and platform will be released in the future.
Recent advances in large language models (LLMs) have revolutionized the landscape of reasoning tasks. To enhance the capabilities of LLMs to emulate human reasoning, prior studies have focused on modeling reasoning steps using various thought structures like chains, trees, or graphs. However, LLM-based reasoning still encounters the following challenges: (1) Limited adaptability of preset structures to diverse tasks; (2) Insufficient precision in exploiting known conditions to derive new ones; and (3) Inadequate consideration of historical reasoning experiences for subsequent reasoning steps. To this end, we propose DetermLR, a novel perspective that rethinks the reasoning process as an evolution from indeterminacy to determinacy. First, we categorize known conditions into two types: determinate and indeterminate premises, facilitating the transformation process. Subsequently, we leverage quantitative measurements to prioritize more relevant premises to explore new insights. Furthermore, we automate the storage and extraction of available premises and reasoning paths with reasoning memory, preserving historical reasoning details for subsequent reasoning steps. Comprehensive experimental results demonstrate that DetermLR surpasses all baselines on various logical reasoning benchmarks: LogiQA, ProofWriter, FOLIO, PrOntoQA, and LogicalDeduction. Compared to previous multi-step reasoning methods, DetermLR achieves higher accuracy with fewer reasoning steps, highlighting its superior efficiency and effectiveness in solving logical reasoning tasks.
This paper introduces EmpathyEar, a pioneering open-source, avatar-based multimodal empathetic chatbot, to fill the gap in traditional text-only empathetic response generation (ERG) systems. Leveraging the advancements of a large language model, combined with multimodal encoders and generators, EmpathyEar supports user inputs in any combination of text, sound, and vision, and produces multimodal empathetic responses, offering users, not just textual responses but also digital avatars with talking faces and synchronized speeches. A series of emotion-aware instruction-tuning is performed for comprehensive emotional understanding and generation capabilities. In this way, EmpathyEar provides users with responses that achieve a deeper emotional resonance, closely emulating human-like empathy. The system paves the way for the next emotional intelligence, for which we open-source the code for public access.
Knowledge-based Visual Question Answering (KBVQA) is a challenging task, which aims to answer an image related question based on external knowledge. Most of the works describe the semantic distance using the actual Euclidean distance between two nodes, which leads to distortion in modeling knowledge graphs with hierarchical and scale-free structure in KBVQA, and limits the multi-hop reasoning capability of the model. In contrast, the hyperbolic space shows exciting prospects for low-distortion embedding of graphs with hierarchical and free-scale structure. In addition, we map the different stages of reasoning into multiple adjustable hyperbolic spaces, achieving low-distortion, fine-grained reasoning. Extensive experiments on the KVQA, PQ and PQL datasets demonstrate the effectiveness of HyperMR for strong-hierarchy knowledge graphs.
Tool learning aims to extend the capabilities of large language models (LLMs) with external tools. A major challenge in tool learning is how to support a large number of tools, including unseen tools. To address this challenge, previous studies have proposed retrieving suitable tools for the LLM based on the user query. However, previously proposed methods do not consider the differences between seen and unseen tools, nor do they take the hierarchy of the tool library into account, which may lead to suboptimal performance for tool retrieval. Therefore, to address the aforementioned issues, we propose ToolRerank, an adaptive and hierarchy-aware reranking method for tool retrieval to further refine the retrieval results. Specifically, our proposed ToolRerank includes Adaptive Truncation, which truncates the retrieval results related to seen and unseen tools at different positions, and Hierarchy-Aware Reranking, which makes retrieval results more concentrated for single-tool queries and more diverse for multi-tool queries. Experimental results show that ToolRerank can improve the quality of the retrieval results, leading to better execution results generated by the LLM.
Morality in dialogue systems has raised great attention in research recently. A moral dialogue system aligned with users’ values could enhance conversation engagement and user connections. In this paper, we propose a framework, MoralDial to train and evaluate moral dialogue systems. In our framework, we first explore the communication mechanisms of morality and resolve expressed morality into three parts, which indicate the roadmap for building a moral dialogue system. Based on that, we design a simple yet effective method: constructing moral discussions between simulated specific users and the dialogue system. The constructed discussions consist of expressing, explaining, revising, and inferring moral views in dialogue exchanges, which makes conversational models learn morality well in a natural manner. Furthermore, we propose a novel evaluation method under the framework. We evaluate the multiple aspects of morality by judging the relation between dialogue responses and human values in discussions, where the multifaceted nature of morality is particularly considered. Automatic and manual experiments demonstrate that our framework is promising to train and evaluate moral dialogue systems.
Text image translation (TIT) aims to translate the source texts embedded in the image to target translations, which has a wide range of applications and thus has important research value. However, current studies on TIT are confronted with two main bottlenecks: 1) this task lacks a publicly available TIT dataset, 2) dominant models are constructed in a cascaded manner, which tends to suffer from the error propagation of optical character recognition (OCR). In this work, we first annotate a Chinese-English TIT dataset named OCRMT30K, providing convenience for subsequent studies. Then, we propose a TIT model with a multimodal codebook, which is able to associate the image with relevant texts, providing useful supplementary information for translation. Moreover, we present a multi-stage training framework involving text machine translation, image-text alignment, and TIT tasks, which fully exploits additional bilingual texts, OCR dataset and our OCRMT30K dataset to train our model. Extensive experiments and in-depth analyses strongly demonstrate the effectiveness of our proposed model and training framework.
Geometric transformations including translation, rotation, and scaling are commonly used operations in image processing. Besides, some of them are successfully used in developing effective knowledge graph embedding (KGE). Inspired by the synergy, we propose a new KGE model by leveraging all three operations in this work. Since translation, rotation, and scaling operations are cascaded to form a composite one, the new model is named CompoundE. By casting CompoundE in the framework of group theory, we show that quite a few distanced-based KGE models are special cases of CompoundE. CompoundE extends the simple distance-based scoring functions to relation-dependent compound operations on head and/or tail entities. To demonstrate the effectiveness of CompoundE, we perform three prevalent KG prediction tasks including link prediction, path query answering, and entity typing, on a range of datasets. CompoundE outperforms extant models consistently, demonstrating its effectiveness and flexibility.
Knowledge graph completion (KGC) aims to discover missing relationships between entities in knowledge graphs (KGs). Most prior KGC work focuses on learning embeddings for entities and relations through a simple score function. Yet, a higher-dimensional embedding space is usually required for a better reasoning capability, which leads to larger model size and hinders applicability to real-world problems (e.g., large-scale KGs or mobile/edge computing). A lightweight modularized KGC solution, called GreenKGC, is proposed in this work to address this issue. GreenKGC consists of three modules: representation learning, feature pruning, and decision learning, to extract discriminant KG features and make accurate predictions on missing relationships using classifiers and negative sampling. Experimental results demonstrate that, in low dimensions, GreenKGC can outperform SOTA methods in most datasets. In addition, low-dimensional GreenKGC can achieve competitive or even better performance against high-dimensional models with a much smaller model size.
This system description paper introduces the systems submitted by Xiaomi AI Lab to the three tracks of the IWSLT 2023 Evaluation Campaign, namely the offline speech translation (Offline-ST) track, the offline speech-to-speech translation (Offline-S2ST) track, and the simultaneous speech translation (Simul-ST) track. All our submissions for these three tracks only involve the English-Chinese language direction. Our English-Chinese speech translation systems are constructed using large-scale pre-trained models as the foundation. Specifically, we fine-tune these models’ corresponding components for various downstream speech translation tasks. Moreover, we implement several popular techniques, such as data filtering, data augmentation, speech segmentation, and model ensemble, to improve the system’s overall performance. Extensive experiments show that our systems achieve a significant improvement over the strong baseline systems in terms of the automatic evaluation metric.
Knowledge base question answering (KBQA) is a challenging task that aims to retrieve correct answers from large-scale knowledge bases. Existing attempts primarily focus on entity representation and final answer reasoning, which results in limited supervision for this task. Moreover, the relations, which empirically determine the reasoning path selection, are not fully considered in recent advancements. In this study, we propose a novel framework, RE-KBQA, that utilizes relations in the knowledge base to enhance entity representation and introduce additional supervision. We explore guidance from relations in three aspects, including (1) distinguishing similar entities by employing a variational graph auto-encoder to learn relation importance; (2) exploring extra supervision by predicting relation distributions as soft labels with a multi-task scheme; (3) designing a relation-guided re-ranking algorithm for post-processing. Experimental results on two benchmark datasets demonstrate the effectiveness and superiority of our framework, improving the F1 score by 5.8% from 40.5 to 46.3 on CWQ and 5.7% from 62.8 to 68.5 on WebQSP, better or on par with state-of-the-art methods.
Universal Information Extraction (Universal IE) aims to solve different extraction tasks in a uniform text-to-structure generation manner. Such a generation procedure tends to struggle when there exist complex information structures to be extracted. Retrieving knowledge from external knowledge bases may help models to overcome this problem but it is impossible to construct a knowledge base suitable for various IE tasks. Inspired by the fact that large amount of knowledge are stored in the pretrained language models (PLM) and can be retrieved explicitly, in this paper, we propose MetaRetriever to retrieve task-specific knowledge from PLMs to enhance universal IE. As different IE tasks need different knowledge, we further propose a Meta-Pretraining Algorithm which allows MetaRetriever to quicktly achieve maximum task-specific retrieval performance when fine-tuning on downstream IE tasks. Experimental results show that MetaRetriever achieves the new state-of-the-art on 4 IE tasks, 12 datasets under fully-supervised, low-resource and few-shot scenarios.
In-Image Machine Translation (IIMT) aims to convert images containing texts from one language to another. Traditional approaches for this task are cascade methods, which utilize optical character recognition (OCR) followed by neural machine translation (NMT) and text rendering. However, the cascade methods suffer from compounding errors of OCR and NMT, leading to a decrease in translation quality. In this paper, we propose an end-to-end model instead of the OCR, NMT and text rendering pipeline. Our neural architecture adopts encoder-decoder paradigm with segmented pixel sequences as inputs and outputs. Through end-to-end training, our model yields improvements across various dimensions, (i) it achieves higher translation quality by avoiding error propagation, (ii) it demonstrates robustness for out domain data, and (iii) it displays insensitivity to incomplete words. To validate the effectiveness of our method and support for future research, we construct our dataset containing 4M pairs of De-En images and train our end-to-end model. The experimental results show that our approach outperforms both cascade method and current end-to-end model.
Conventional knowledge distillation(KD) approaches are commonly employed to compress neural machine translation(NMT) models. However, they only obtain one lightweight student each time. Consequently, we have to conduct KD multiple times when different students are required at the same time, which could be resource-intensive. Additionally, these students are individually optimized, and thus lack interactions with each other, leading to their potential not being fully exerted. In this work, we propose a novel All-In-One Knowledge Distillation(AIO-KD) framework for NMT, which generates multiple satisfactory students at once. Under AIO-KD, we first randomly extract fewer-layer subnetworks from the teacher as the sample students. Then, we jointly optimize the teacher and these students, where the students simultaneously learn the knowledge from the teacher and interact with other students via mutual learning. When utilized, we re-extract the candidate students, satisfying the specifications of various devices. Particularly, we adopt carefully-designed strategies for AIO-KD: 1) we dynamically detach gradients to prevent poorly-performed students from negatively affecting the teacher during the knowledge transfer, which could subsequently impact other students; 2) we design a two-stage mutual learning strategy, which alleviates the negative impacts of poorly-performed students on the early-stage student interactions. Extensive experiments and in-depth analyses on three benchmarks demonstrate the effectiveness and eco-friendliness of AIO-KD. Our source code is available at https://github.com/DeepLearnXMU/AIO-KD.
Conventional dialogue summarization methods directly generate summaries and do not consider user’s specific interests. This poses challenges in cases where the users are more focused on particular topics or aspects. With the advancement of instruction-finetuned language models, we introduce instruction-tuning to dialogues to expand the capability set of dialogue summarization models. To overcome the scarcity of instructive dialogue summarization data, we propose a three-step approach to synthesize high-quality query-based summarization triples. This process involves summary-anchored query generation, query filtering and query-based summary generation. By training a unified model called InstructDS (Instructive Dialogue Summarization) on three summarization datasets with multi-purpose instructive triples, we expand the capability of dialogue summarization models. We evaluate our method on four datasets, including dialogue summarization and dialogue reading comprehension. Experimental results show that our approach outperforms the state-of-the-art models and even models with larger sizes. Additionally, our model exhibits higher generalizability and faithfulness, as confirmed by human subjective evaluations.
Semantic parsing maps natural language questions into logical forms, which can be executed against a knowledge base for answers. In real-world applications, the performance of a parser is often limited by the lack of training data. To facilitate zero-shot learning, data synthesis has been widely studied to automatically generate paired questions and logical forms. However, data synthesis methods can hardly cover the diverse structures in natural languages, leading to a large gap in sentence structure between synthetic and natural questions. In this paper, we propose a decomposition-based method to unify the sentence structures of questions, which benefits the generalization to natural questions. Experiments demonstrate that our method significantly improves the semantic parser trained on synthetic data (+7.9% on KQA and +8.9% on ComplexWebQuestions in terms of exact match accuracy). Extensive analysis demonstrates that our method can better generalize to natural questions with novel text expressions compared with baselines. Besides semantic parsing, our idea potentially benefits other semantic understanding tasks by mitigating the distracting structure features. To illustrate this, we extend our method to the task of sentence embedding learning, and observe substantial improvements on sentence retrieval (+13.1% for Hit@1).
Prior research on dialogue state tracking (DST) is mostly based on written dialogue corpora. For spoken dialogues, the DST model trained on the written text should use the results (or hypothesis) of automatic speech recognition (ASR) as input. But ASR hypothesis often includes errors, which leads to significant performance drop for spoken dialogue state tracking. We address the issue by developing the following ASR error correction modules. First, we train a model to convert ASR hypothesis to ground truth user utterance, which can fix frequent patterns of errors. The model takes ASR hypotheses of two ASR models as input and fine-tuned in two stages. The corrected hypothesis is fed into a large scale pre-trained encoder-decoder model (T5) for DST training and inference. Second, if an output slot value from the encoder-decoder model is a name, we compare it with names in a dictionary crawled from Web sites and, if feasible, replace with the crawled name of the shortest edit distance. Third, we fix errors of temporal expressions in ASR hypothesis by using hand-crafted rules. Experiment results on the DSTC 11 speech-aware dataset, which is built on the popular MultiWOZ task (version 2.1), show that our proposed method can effectively mitigate the performance drop when moving from written text to spoken conversations.
This system paper describes the BIT-Xiaomi simultaneous translation system for Autosimtrans 2022 simultaneous translation challenge. We participated in three tracks: the Zh-En text-to-text track, the Zh-En audio-to-text track and the En-Es test-to-text track. In our system, wait-k is employed to train prefix-to-prefix translation models. We integrate streaming chunking to detect boundaries as the source streaming read in. We further improve our system with data selection, data-augmentation and R-drop training methods. Results show that our wait-k implementation outperforms organizer’s baseline by 8 BLEU score at most, and our proposed streaming chunking method further improves about 2 BLEU in low latency regime.
Applying existing methods to emotional support conversation—which provides valuable assistance to people who are in need—has two major limitations: (a) they generally employ a conversation-level emotion label, which is too coarse-grained to capture user’s instant mental state; (b) most of them focus on expressing empathy in the response(s) rather than gradually reducing user’s distress. To address the problems, we propose a novel model MISC, which firstly infers the user’s fine-grained emotional status, and then responds skillfully using a mixture of strategy. Experimental results on the benchmark dataset demonstrate the effectiveness of our method and reveal the benefits of fine-grained emotion understanding as well as mixed-up strategy modeling.
Word and sentence embeddings are useful feature representations in natural language processing. However, intrinsic evaluation for embeddings lags far behind, and there has been no significant update since the past decade. Word and sentence similarity tasks have become the de facto evaluation method. It leads models to overfit to such evaluations, negatively impacting embedding models’ development. This paper first points out the problems using semantic similarity as the gold standard for word and sentence embedding evaluations. Further, we propose a new intrinsic evaluation method called EvalRank, which shows a much stronger correlation with downstream tasks. Extensive experiments are conducted based on 60+ models and popular datasets to certify our judgments. Finally, the practical evaluation toolkit is released for future benchmarking purposes.
Dialogue summarization is abstractive in nature, making it suffer from factual errors. The factual correctness of summaries has the highest priority before practical applications. Many efforts have been made to improve faithfulness in text summarization. However, there is a lack of systematic study on dialogue summarization systems. In this work, we first perform the fine-grained human analysis on the faithfulness of dialogue summaries and observe that over 35% of generated summaries are faithfully inconsistent respective the source dialogues. Furthermore, we present a new model-level faithfulness evaluation method. It examines generation models with multi-choice questions created by rule-based transformations. Experimental results show that our evaluation schema is a strong proxy for the factual correctness of summarization models. The human-annotated faithfulness samples and the evaluation toolkit are released to facilitate future research toward faithful dialogue summarization.
As one of the challenging NLP tasks, designing math word problem (MWP) solvers has attracted increasing research attention for the past few years. In previous work, models designed by taking into account the properties of the binary tree structure of mathematical expressions at the output side have achieved better performance. However, the expressions corresponding to a MWP are often diverse (e.g., n1+n2 × n3-n4, n3× n2-n4+n1, etc.), and so are the corresponding binary trees, which creates difficulties in model learning due to the non-deterministic output space. In this paper, we propose the Structure-Unified M-Tree Coding Solver (SUMC-Solver), which applies a tree with any M branches (M-tree) to unify the output structures. To learn the M-tree, we use a mapping to convert the M-tree into the M-tree codes, where codes store the information of the paths from tree root to leaf nodes and the information of leaf nodes themselves, and then devise a Sequence-to-Code (seq2code) model to generate the codes. Experimental results on the widely used MAWPS and Math23K datasets have demonstrated that SUMC-Solver not only outperforms several state-of-the-art models under similar experimental settings but also performs much better under low-resource conditions.
Most sentence embedding techniques heavily rely on expensive human-annotated sentence pairs as the supervised signals. Despite the use of large-scale unlabeled data, the performance of unsupervised methods typically lags far behind that of the supervised counterparts in most downstream tasks. In this work, we propose a semi-supervised sentence embedding framework, GenSE, that effectively leverages large-scale unlabeled data. Our method include three parts: 1) Generate: A generator/discriminator model is jointly trained to synthesize sentence pairs from open-domain unlabeled corpus; 2) Discriminate: Noisy sentence pairs are filtered out by the discriminator to acquire high-quality positive and negative sentence pairs; 3) Contrast: A prompt-based contrastive approach is presented for sentence representation learning with both annotated and synthesized data. Comprehensive experiments show that GenSE achieves an average correlation score of 85.19 on the STS datasets and consistent performance improvement on four domain adaptation tasks, significantly surpassing the state-of-the-art methods and convincingly corroborating its effectiveness and generalization ability.
Existing commonsense knowledge bases often organize tuples in an isolated manner, which is deficient for commonsense conversational models to plan the next steps. To fill the gap, we curate a large-scale multi-turn human-written conversation corpus, and create the first Chinese commonsense conversation knowledge graph which incorporates both social commonsense knowledge and dialog flow information. To show the potential of our graph, we develop a graph-conversation matching approach, and benchmark two graph-grounded conversational tasks. All the resources in this work will be released to foster future research.
Open Information Extraction (OpenIE) facilitates the open-domain discovery of textual facts. However, the prevailing solutions evaluate OpenIE models on in-domain test sets aside from the training corpus, which certainly violates the initial task principle of domain-independence. In this paper, we propose to advance OpenIE towards a more realistic scenario: generalizing over unseen target domains with different data distributions from the source training domains, termed Generalized OpenIE. For this purpose, we first introduce GLOBE, a large-scale human-annotated multi-domain OpenIE benchmark, to examine the robustness of recent OpenIE models to domain shifts, and the relative performance degradation of up to 70% implies the challenges of generalized OpenIE. Then, we propose DragonIE, which explores a minimalist expression of textual fact: directed acyclic graph, to improve the OpenIE generalization ability. Extensive experiments demonstrate that DragonIE beats the previous methods in both in-domain and out-of-domain settings by as much as 6.0% in F1 score absolutely, but there is still ample room for improvement.
Reinforcement learning (RL) has emerged as a promising approach to fine-tune offline pretrained GPT-2 model in task-oriented dialogue (TOD) systems. In order to obtain human-like online interactions while extending the usage of RL, building pretrained user simulators (US) along with dialogue systems (DS) and facilitating jointly fine-tuning via RL becomes prevalent. However, joint training brings distributional shift problem caused by compounding exposure bias. Existing methods usually iterative update US and DS to ameliorate the ensued non-stationarity problem, which could lead to sub-optimal policy and less sample efficiency. To take a step further for tackling the problem, we introduce an Offline-to-oNline Co-Evolutional (ONCE) framework, which enables bias-aware concurrent joint update for RL-based fine-tuning whilst takes advantages from GPT-2 based end-to-end modeling on US and DS. Extensive experiments demonstrate that ONCE builds high-quality loops of policy learning and dialogues data collection, and achieves state-of-the-art online and offline evaluation results on MultiWOZ2.1 dataset. Opensourced code will be implemented with Mindspore (MS, 2022) and released on our homepage.
This system paper describes the Xiaomi Translation System for the IWSLT 2022 Simultaneous Speech Translation (noted as SST) shared task. We participate in the English-to-Mandarin Chinese Text-to-Text (noted as T2T) track. Our system is built based on the Transformer model with novel techniques borrowed from our recent research work. For the data filtering, language-model-based and rule-based methods are conducted to filter the data to obtain high-quality bilingual parallel corpora. We also strengthen our system with some dominating techniques related to data augmentation, such as knowledge distillation, tagged back-translation, and iterative back-translation. We also incorporate novel training techniques such as R-drop, deep model, and large batch training which have been shown to be beneficial to the naive Transformer model. In the SST scenario, several variations of extttwait-k strategies are explored. Furthermore, in terms of robustness, both data-based and model-based ways are used to reduce the sensitivity of our system to Automatic Speech Recognition (ASR) outputs. We finally design some inference algorithms and use the adaptive-ensemble method based on multiple model variants to further improve the performance of the system. Compared with strong baselines, fusing all techniques can improve our system by 2 extasciitilde3 BLEU scores under different latency regimes.
Most existing methods on robust neural machine translation (NMT) construct adversarial examples by injecting noise into authentic examples and indiscriminately exploit two types of examples. They require the model to translate both the authentic source sentence and its adversarial counterpart into the identical target sentence within the same training stage, which may be a suboptimal choice to achieve robust NMT. In this paper, we first conduct a preliminary study to confirm this claim and further propose an Iterative Scheduled Data-switch Training Framework to mitigate this problem. Specifically, we introduce two training stages, iteratively switching between authentic and adversarial examples. Compared with previous studies, our model focuses more on just one type of examples at each single stage, which can better exploit authentic and adversarial examples, and thus obtaining a better robust NMT model. Moreover, we introduce an improved curriculum learning method with a sampling strategy to better schedule the process of noise injection. Experimental results show that our model significantly surpasses several competitive baselines on four translation benchmarks. Our source code is available at https://github.com/DeepLearnXMU/RobustNMT-ISDST.
Recent researches show that pre-trained models (PTMs) are beneficial to Chinese Word Segmentation (CWS). However, PTMs used in previous works usually adopt language modeling as pre-training tasks, lacking task-specific prior segmentation knowledge and ignoring the discrepancy between pre-training tasks and downstream CWS tasks. In this paper, we propose a CWS-specific pre-trained model MetaSeg, which employs a unified architecture and incorporates meta learning algorithm into a multi-criteria pre-training task. Empirical results show that MetaSeg could utilize common prior segmentation knowledge from different existing criteria and alleviate the discrepancy between pre-trained models and downstream CWS tasks. Besides, MetaSeg can achieve new state-of-the-art performance on twelve widely-used CWS datasets and significantly improve model performance in low-resource settings.
Open Information Extraction (OpenIE) aims to discover textual facts from a given sentence. In essence, the facts contained in plain text are unordered. However, the popular OpenIE systems usually output facts sequentially in the way of predicting the next fact conditioned on the previous decoded ones, which enforce an unnecessary order on the facts and involve the error accumulation between autoregressive steps. To break this bottleneck, we propose MacroIE, a novel non-autoregressive framework for OpenIE. MacroIE firstly constructs a fact graph based on the table filling scheme, in which each node denotes a fact element, and an edge links two nodes that belong to the same fact. Then OpenIE can be reformulated as a non-parametric process of finding maximal cliques from the graph. It directly outputs the final set of facts in one go, thus getting rid of the burden of predicting fact order, as well as the error propagation between facts. Experiments conducted on two benchmark datasets show that our proposed model significantly outperforms current state-of-the-art methods, beats the previous systems by as much as 5.7 absolute gain in F1 score.
Non-autoregressive models generate target words in a parallel way, which achieve a faster decoding speed but at the sacrifice of translation accuracy. To remedy a flawed translation by non-autoregressive models, a promising approach is to train a conditional masked translation model (CMTM), and refine the generated results within several iterations. Unfortunately, such approach hardly considers the sequential dependency among target words, which inevitably results in a translation degradation. Hence, instead of solely training a Transformer-based CMTM, we propose a Self-Review Mechanism to infuse sequential information into it. Concretely, we insert a left-to-right mask to the same decoder of CMTM, and then induce it to autoregressively review whether each generated word from CMTM is supposed to be replaced or kept. The experimental results (WMT14 En ↔ De and WMT16 En ↔ Ro) demonstrate that our model uses dramatically less training computations than the typical CMTM, as well as outperforms several state-of-the-art non-autoregressive models by over 1 BLEU. Through knowledge distillation, our model even surpasses a typical left-to-right Transformer model, while significantly speeding up decoding.
Incorporating lexicons into character-level Chinese NER by lattices is proven effective to exploitrich word boundary information. Previous work has extended RNNs to consume lattice inputsand achieved great success. However, due to the DAG structure and the inherently unidirectionalsequential nature, this method precludes batched computation and sufficient semantic interaction. In this paper, we propose PLTE, an extension of transformer encoder that is tailored for ChineseNER, which models all the characters and matched lexical words in parallel with batch process-ing. PLTE augments self-attention with positional relation representations to incorporate latticestructure. It also introduces a porous mechanism to augment localness modeling and maintainthe strength of capturing the rich long-term dependencies. Experimental results show that PLTEperforms up to 11.4 times faster than state-of-the-art methods while realizing better performance. We also demonstrate that using BERT representations further substantially boosts the performanceand brings out the best in PLTE.
Dependency trees have been shown to be effective in capturing long-range relations between target entities. Nevertheless, how to selectively emphasize target-relevant information and remove irrelevant content from the tree is still an open problem. Existing approaches employing pre-defined rules to eliminate noise may not always yield optimal results due to the complexity and variability of natural language. In this paper, we present a novel architecture named Dynamically Pruned Graph Convolutional Network (DP-GCN), which learns to prune the dependency tree with rethinking in an end-to-end scheme. In each layer of DP-GCN, we employ a selection module to concentrate on nodes expressing the target relation by a set of binary gates, and then augment the pruned tree with a pruned semantic graph to ensure the connectivity. After that, we introduce a rethinking mechanism to guide and refine the pruning operation by feeding back the high-level learned features repeatedly. Extensive experimental results demonstrate that our model achieves impressive results compared to strong competitors.
This article describes the system submitted to SemEval 2020 Task 4: Commonsense Validation and Explanation. We only participated in the subtask A, which is mainly to distinguish whether the sentence has meaning. To solve this task, we mainly used ALBERT model-based maximum ensemble with different training sizes and depths. To prove the validity of the model to the task, we also used some other neural network models for comparison. Our model achieved the accuracy score of 0.938(ranked 10/41) in subtask A.
This article describes the system submitted to SemEval 2020 Task 5: Modelling Causal Reasoning in Language: Detecting Counterfactuals. In this task, we only participate in the subtask A which is detecting counterfactual statements. In order to solve this sub-task, first of all, because of the problem of data balance, we use the undersampling and oversampling methods to process the data set. Second, we used the ALBERT model and the maximum ensemble method based on the ALBERT model. Our methods achieved a F1 score of 0.85 in subtask A.
Recently, document-level neural machine translation (NMT) has become a hot topic in the community of machine translation. Despite its success, most of existing studies ignored the discourse structure information of the input document to be translated, which has shown effective in other tasks. In this paper, we propose to improve document-level NMT with the aid of discourse structure information. Our encoder is based on a hierarchical attention network (HAN) (Miculicich et al., 2018). Specifically, we first parse the input document to obtain its discourse structure. Then, we introduce a Transformer-based path encoder to embed the discourse structure information of each word. Finally, we combine the discourse structure information with the word embedding before it is fed into the encoder. Experimental results on the English-to-German dataset show that our model can significantly outperform both Transformer and Transformer+HAN.
This paper describes the Xiaomi’s submissions to the IWSLT20 shared open domain translation task for Chinese<->Japanese language pair. We explore different model ensembling strategies based on recent Transformer variants. We also further strengthen our systems via some effective techniques, such as data filtering, data selection, tagged back translation, domain adaptation, knowledge distillation, and re-ranking. Our resulting Chinese->Japanese primary system ranked second in terms of character-level BLEU score among all submissions. Our resulting Japanese->Chinese primary system also achieved a competitive performance.
To model diverse responses for a given post, one promising way is to introduce a latent variable into Seq2Seq models. The latent variable is supposed to capture the discourse-level information and encourage the informativeness of target responses. However, such discourse-level information is often too coarse for the decoder to be utilized. To tackle it, our idea is to transform the coarse-grained discourse-level information into fine-grained word-level information. Specifically, we firstly measure the semantic concentration of corresponding target response on the post words by introducing a fine-grained focus signal. Then, we propose a focus-constrained attention mechanism to take full advantage of focus in well aligning the input to the target response. The experimental results demonstrate that by exploiting the fine-grained signal, our model can generate more diverse and informative responses compared with several state-of-the-art models.
More recently, Named Entity Recognition hasachieved great advances aided by pre-trainingapproaches such as BERT. However, currentpre-training techniques focus on building lan-guage modeling objectives to learn a gen-eral representation, ignoring the named entity-related knowledge. To this end, we proposea NER-specific pre-training framework to in-ject coarse-to-fine automatically mined entityknowledge into pre-trained models. Specifi-cally, we first warm-up the model via an en-tity span identification task by training it withWikipedia anchors, which can be deemed asgeneral-typed entities. Then we leverage thegazetteer-based distant supervision strategy totrain the model extract coarse-grained typedentities. Finally, we devise a self-supervisedauxiliary task to mine the fine-grained namedentity knowledge via clustering.Empiricalstudies on three public NER datasets demon-strate that our framework achieves significantimprovements against several pre-trained base-lines, establishing the new state-of-the-art per-formance on three benchmarks. Besides, weshow that our framework gains promising re-sults without using human-labeled trainingdata, demonstrating its effectiveness in label-few and low-resource scenarios.
This paper describes the system submitted to SemEval 2019 Task 5: Multilingual detection of hate speech against immigrants and women in Twitter (hatEval). Its main purpose is to conduct hate speech detection on Twitter, which mainly includes two specific different targets, immigrants and women. We participate in both subtask A and subtask B for English. In order to address this task, we develope an ensemble of an attention-LSTM model based on HAN and an BiGRU-capsule model. Both models use fastText pre-trained embeddings, and we use this model in both subtasks. In comparison to other participating teams, our system is ranked 16th in the Sub-task A for English, and 12th in the Sub-task B for English.
This paper describes the system submitted to SemEval 2019 Task 6: OffensEval 2019. The task aims to identify and categorize offensive language in social media, we only participate in Sub-task A, which aims to identify offensive language. In order to address this task, we propose a system based on a K-max pooling convolutional neural network model, and use an argument for averaging as a valid meta-embedding technique to get a metaembedding. Finally, we also use a cyclic learning rate policy to improve model performance. Our model achieves a Macro F1-score of 0.802 (ranked 9/103) in the Sub-task A.
The coarse-to-fine (coarse2fine) methods have recently been widely used in the generation tasks. The methods first generate a rough sketch in the coarse stage and then use the sketch to get the final result in the fine stage. However, they usually lack the correction ability when getting a wrong sketch. To solve this problem, in this paper, we propose an improved coarse2fine model with a control mechanism, with which our method can control the influence of the sketch on the final results in the fine stage. Even if the sketch is wrong, our model still has the opportunity to get a correct result. We have experimented our model on the tasks of semantic parsing and math word problem solving. The results have shown the effectiveness of our proposed model.
We consider the problem of learning distributed representations for entities and relations of multi-relational data so as to predict missing links therein. Convolutional neural networks have recently shown their superiority for this problem, bringing increased model expressiveness while remaining parameter efficient. Despite the success, previous convolution designs fail to model full interactions between input entities and relations, which potentially limits the performance of link prediction. In this work we introduce ConvR, an adaptive convolutional network designed to maximize entity-relation interactions in a convolutional fashion. ConvR adaptively constructs convolution filters from relation representations, and applies these filters across entity representations to generate convolutional features. As such, ConvR enables rich interactions between entity and relation representations at diverse regions, and all the convolutional features generated will be able to capture such interactions. We evaluate ConvR on multiple benchmark datasets. Experimental results show that: (1) ConvR performs substantially better than competitive baselines in almost all the metrics and on all the datasets; (2) Compared with state-of-the-art convolutional models, ConvR is not only more effective but also more efficient. It offers a 7% increase in MRR and a 6% increase in Hits@10, while saving 12% in parameter storage.
We participated in the BioNLP 2019 Open Shared Tasks: binary relation extraction of SeeDev task. The model was constructed us- ing convolutional neural networks (CNN) and long short term memory networks (LSTM). The full text information and context information were collected using the advantages of CNN and LSTM. The model consisted of two main modules: distributed semantic representation construction, such as word embedding, distance embedding and entity type embed- ding; and CNN-LSTM model. The F1 value of our participated task on the test data set of all types was 0.342. We achieved the second highest in the task. The results showed that our proposed method performed effectively in the binary relation extraction.
Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Early works performed this task via simple models developed over KG triples. Recent attempts focused on either designing more complicated triple scoring models, or incorporating extra information beyond triples. This paper, by contrast, investigates the potential of using very simple constraints to improve KG embedding. We examine non-negativity constraints on entity representations and approximate entailment constraints on relation representations. The former help to learn compact and interpretable representations for entities. The latter further encode regularities of logical entailment between relations into their distributed representations. These constraints impose prior beliefs upon the structure of the embedding space, without negative impacts on efficiency or scalability. Evaluation on WordNet, Freebase, and DBpedia shows that our approach is simple yet surprisingly effective, significantly and consistently outperforming competitive baselines. The constraints imposed indeed improve model interpretability, leading to a substantially increased structuring of the embedding space. Code and data are available at https://github.com/iieir-km/ComplEx-NNE_AER.
Distant supervision is an efficient approach that automatically generates labeled data for relation extraction (RE). Traditional distantly supervised RE systems rely heavily on handcrafted features, and hence suffer from error propagation. Recently, a neural network architecture has been proposed to automatically extract features for relation classification. However, this approach follows the traditional expressed-at-least-once assumption, and fails to make full use of information across different sentences. Moreover, it ignores the fact that there can be multiple relations holding between the same entity pair. In this paper, we propose a multi-instance multi-label convolutional neural network for distantly supervised RE. It first relaxes the expressed-at-least-once assumption, and employs cross-sentence max-pooling so as to enable information sharing across different sentences. Then it handles overlapping relations by multi-label learning with a neural network classifier. Experimental results show that our approach performs significantly and consistently better than state-of-the-art methods.