Bing Qin


2024

pdf bib
BC-Prover: Backward Chaining Prover for Formal Theorem Proving
Yuhang He | Jihai Zhang | Jianzhu Bao | Fangquan Lin | Cheng Yang | Bing Qin | Ruifeng Xu | Wotao Yin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Despite the remarkable progress made by large language models in mathematical reasoning, interactive theorem proving in formal logic still remains a prominent challenge. Previous methods resort to neural models for proofstep generation and search. However, they suffer from exploring possible proofsteps empirically in a large search space. Moreover, they directly use a less rigorous informal proof for proofstep generation, neglecting the incomplete reasoning within. In this paper, we propose BC-Prover, a backward chaining framework guided by pseudo steps. Specifically, BC-Prover prioritizes pseudo steps to proofstep generation. The pseudo steps boost the proof construction in two aspects: (1) Backward Chaining that decomposes the proof into sub-goals for goal-oriented exploration. (2) Step Planning that makes a fine-grained planning to bridge the gap between informal and formal proofs. Experiments on the miniF2F benchmark show significant performance gains by our framework over the state-of-the-art approaches. Our framework is also compatible with existing provers and further improves their performance with the backward chaining technique.

pdf bib
Advancing Large Language Model Attribution through Self-Improving
Lei Huang | Xiaocheng Feng | Weitao Ma | Liang Zhao | Yuchun Fan | Weihong Zhong | Dongliang Xu | Qing Yang | Hongtao Liu | Bing Qin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Teaching large language models (LLMs) to generate text with citations to evidence sources can mitigate hallucinations and enhance verifiability in information-seeking systems. However, improving this capability requires high-quality attribution data, which is costly and labor-intensive. Inspired by recent advances in self-improvement that enhance LLMs without manual annotation, we present START, a Self-Taught AttRibuTion framework for iteratively improving the attribution capability of LLMs. First, to prevent models from stagnating due to initially insufficient supervision signals, START leverages the model to self-construct synthetic training data for warming up. To further self-improve the model’s attribution ability, START iteratively utilizes fine-grained preference supervision signals constructed from its sampled responses to encourage robust, comprehensive, and attributable generation. Experiments on three open-domain question-answering datasets, covering long-form QA and multi-step reasoning, demonstrate significant performance gains of 25.13% on average without relying on human annotations and more advanced models. Further analysis reveals that START excels in aggregating information across multiple sources.

pdf bib
Aligning Translation-Specific Understanding to General Understanding in Large Language Models
Yichong Huang | Baohang Li | Xiaocheng Feng | Wenshuai Huo | Chengpeng Fu | Ting Liu | Bing Qin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language models (LLMs) have exhibited remarkable abilities in understanding complex texts, offering a promising path towards human-like translation performance. However, this study reveals the misalignment between the translation-specific understanding and the general understanding inside LLMs. This understanding misalignment leads to LLMs mistakenly or literally translating some complicated concepts that they accurately comprehend in the general scenarios (e.g., QA). To align the translation-specific understanding to the general one, we propose a novel translation process, DUAT (Difficult words Understanding Aligned Translation), explicitly incorporating the general understanding on the complicated content incurring inconsistent understandings to guide the translation. Specifically, DUAT performs cross-lingual interpretation for the difficult-to-translate words and enhances the translation with the generated interpretations. Furthermore, we reframe the external tools to improve DUAT in detecting difficult words and generating helpful interpretations. We conduct experiments on the self-constructed benchmark Challenge-WMT, consisting of samples that are prone to mistranslation. Human evaluation results on high-resource and low-resource language pairs indicate that DUAT significantly facilitates the understanding alignment, which improves the translation quality (up to +3.85 COMET) and reduces translation literalness by -25% ∼ -51%.

pdf bib
Extending Context Window of Large Language Models from a Distributional Perspective
Yingsheng Wu | Yuxuan Gu | Xiaocheng Feng | Weihong Zhong | Dongliang Xu | Qing Yang | Hongtao Liu | Bing Qin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Scaling the rotary position embedding (RoPE) has become a common method for extending the context window of RoPE-based large language models (LLMs). However, existing scaling methods often rely on empirical approaches and lack a profound understanding of the internal distribution within RoPE, resulting in suboptimal performance in extending the context window length. In this paper, we propose to optimize the context window extending task from the view of rotary angle distribution. Specifically, we first estimate the distribution of the rotary angles within the model and analyze the extent to which length extension perturbs this distribution. Then, we present a novel extension strategy that minimizes the disturbance between rotary angle distributions to maintain consistency with the pre-training phase, enhancing the model’s capability to generalize to longer sequences. Experimental results compared to the strong baseline methods demonstrate that our approach reduces by up to 72% of the distributional disturbance when extending LLaMA2’s context window to 8k, and reduces by up to 32% when extending to 16k. On the LongBench-E benchmark, our method achieves an average improvement of up to 4.33% over existing state-of-the-art methods. Furthermore, Our method maintains the model’s performance on the Hugging Face Open LLM benchmark after context window extension, with only an average performance fluctuation ranging from -0.12 to +0.22.

pdf bib
GlobeSumm: A Challenging Benchmark Towards Unifying Multi-lingual, Cross-lingual and Multi-document News Summarization
Yangfan Ye | Xiachong Feng | Xiaocheng Feng | Weitao Ma | Libo Qin | Dongliang Xu | Qing Yang | Hongtao Liu | Bing Qin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

News summarization in today’s global scene can be daunting with its flood of multilingual content and varied viewpoints from different sources. However, current studies often neglect such real-world scenarios as they tend to focus solely on either single-language or single-document tasks. To bridge this gap, we aim to unify Multi-lingual, Cross-lingual and Multi-document Summarization into a novel task, i.e., MCMS, which encapsulates the real-world requirements all-in-one. Nevertheless, the lack of a benchmark inhibits researchers from adequately studying this invaluable problem. To tackle this, we have meticulously constructed the GLOBESUMM dataset by first collecting a wealth of multilingual news reports and restructuring them into event-centric format. Additionally, we introduce the method of protocol-guided prompting for high-quality and cost-effective reference annotation. In MCMS, we also highlight the challenge of conflicts between news reports, in addition to the issues of redundancies and omissions, further enhancing the complexity of GLOBESUMM. Through extensive experimental analysis, we validate the quality of our dataset and elucidate the inherent challenges of the task. We firmly believe that GLOBESUMM, given its challenging nature, will greatly contribute to the multilingual communities and the evaluation of LLMs.

pdf bib
Improving In-Context Learning with Prediction Feedback for Sentiment Analysis
Hongling Xu | Qianlong Wang | Yice Zhang | Min Yang | Xi Zeng | Bing Qin | Ruifeng Xu
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) have achieved promising results in sentiment analysis through the in-context learning (ICL) paradigm. However, their ability to distinguish subtle sentiments still remains a challenge. Inspired by the human ability to adjust understanding via feedback, this paper enhances ICL by incorporating prior predictions and feedback, aiming to rectify sentiment misinterpretation of LLMs. Specifically, the proposed framework consists of three steps: (1) acquiring prior predictions of LLMs, (2) devising predictive feedback based on correctness, and (3) leveraging a feedback-driven prompt to refine sentiment understanding. Experimental results across nine sentiment analysis datasets demonstrate the superiority of our framework over conventional ICL methods, with an average F1 improvement of 5.95%.

pdf bib
Deciphering the Impact of Pretraining Data on Large Language Models through Machine Unlearning
Yang Zhao | Li Du | Xiao Ding | Kai Xiong | Zhouhao Sun | Shi Jun | Ting Liu | Bing Qin
Findings of the Association for Computational Linguistics: ACL 2024

Through pretraining on a corpus with various sources, Large Language Models (LLMs) have gained impressive performance. However, the impact of each component of the pretraining corpus remains opaque. As a result, the organization of the pretraining corpus is still empirical and may deviate from the optimal. To address this issue, we systematically analyze the impact of 48 datasets from 5 major categories of pretraining data of LLMs and measure their impacts on LLMs using benchmarks about nine major categories of model capabilities. Our analyses provide empirical results about the contribution of multiple corpora on the performances of LLMs, along with their joint impact patterns, including complementary, orthogonal, and correlational relationships. We also identify a set of “high-impact data” such as Books that is significantly related to a set of model capabilities. These findings provide insights into the organization of data to support more efficient pretraining of LLMs.

pdf bib
AS-ES Learning: Towards efficient CoT learning in small models
Nuwa Xi | Yuhan Chen | Sendong Zhao | Haochun Wang | GongZhang GongZhang | Bing Qin | Ting Liu
Findings of the Association for Computational Linguistics: ACL 2024

Chain-of-Thought (CoT) serves as a critical emerging ability in LLMs, especially when it comes to logical reasoning. Attempts have been made to induce such ability in small models as well by distilling from the data with CoT generated by Large Language Models (LLMs). However, existing methods often simply generate and incorporate more data from LLMs and fail to note the importance of efficiently utilizing existing CoT data. We here propose a new training paradigm AS-ES (Abstractive Segments - Extractive Segments) learning, which exploits the inherent information in CoT for iterative generation. Experiments show that our methods surpass the direct seq2seq training on CoT-extensive tasks like MWP and PET summarization, without data augmentation or altering the model itself. Furthermore, we explore the reason behind the inefficiency of small models in learning CoT and provide an explanation of why AS-ES learning works, giving insights into the underlying mechanism of CoT.

pdf bib
Both Matter: Enhancing the Emotional Intelligence of Large Language Models without Compromising the General Intelligence
Weixiang Zhao | Zhuojun Li | Shilong Wang | Yang Wang | Yulin Hu | Yanyan Zhao | Chen Wei | Bing Qin
Findings of the Association for Computational Linguistics: ACL 2024

Emotional Intelligence (EI), consisting of emotion perception, emotion cognition and emotion expression, plays the critical roles in improving user interaction experience for the current large language model (LLM) based conversational general AI assistants. Previous works mainly focus on raising the emotion perception ability of them via naive fine-tuning on EI-related classification or regression tasks. However, this leads to the incomplete enhancement of EI and catastrophic forgetting of the general intelligence (GI). To this end, we first introduce EiBench, a large-scale collection of EI-related tasks in the text-to-text format with task instructions that covers all three aspects of EI, which lays a solid foundation for the comprehensive EI enhancement of LLMs. Then a novel Modular Emotional Intelligence enhancement method (**MoEI**), consisting of Modular Parameter Expansion and intra-inter modulation, is proposed to comprehensively enhance the EI of LLMs without compromise their GI. Extensive experiments on two representative LLM-based assistants, Flan-T5 and LLaMA-2-Chat, demonstrate the effectiveness of MoEI to improving EI while maintain GI.

pdf bib
Decomposing Argumentative Essay Generation via Dialectical Planning of Complex Reasoning
Yuhang He | Jianzhu Bao | Yang Sun | Bin Liang | Min Yang | Bing Qin | Ruifeng Xu
Findings of the Association for Computational Linguistics: ACL 2024

Argumentative Essay Generation (AEG) is a challenging task in computational argumentation, where detailed logical reasoning and effective rhetorical skills are essential.Previous methods on argument generation typically involve planning prior to generation.However, the planning strategies in these methods overlook the exploration of the logical reasoning process.Inspired by argument structure-related theories, we propose an argumentative planning strategy for prompting large language models (LLMs) to generate high-quality essays.This strategy comprises two stages: (1) Sketch planning, which creates a rough outline of the essay, and (2) Dialectical planning, which refines the outline through critical self-reflection.Such a planning strategy enables LLMs to write argumentative essays that are more logical, diverse, and persuasive.Furthermore, due to the scarcity of existing AEG datasets, we construct three new datasets.These datasets are from two domains: exam essays and news editorials, covering both Chinese and English.Automatic and manual evaluation on four datasets show that our method can generate more dialectical and persuasive essays with higher diversity compared to several strong baselines.

pdf bib
Learning Fine-Grained Grounded Citations for Attributed Large Language Models
Lei Huang | Xiaocheng Feng | Weitao Ma | Yuxuan Gu | Weihong Zhong | Xiachong Feng | Weijiang Yu | Weihua Peng | Duyu Tang | Dandan Tu | Bing Qin
Findings of the Association for Computational Linguistics: ACL 2024

Despite the impressive performance on information-seeking tasks, large language models (LLMs) still struggle with hallucinations. Attributed LLMs, which augment generated text with in-line citations, demonstrate potential in mitigating hallucinations and improving verifiability. However, current approaches suffer from suboptimal citation quality due to their reliance on in-context learning. Furthermore, the practice of merely citing document identifiers complicates the process for users to pinpoint specific supporting evidence. In this work, we introduce FRONT, a training framework that teaches LLMs to generate Fine-grained grounded citations. By initially grounding fine-grained supporting quotes, which then guide the generation process, these quotes not only provide supervision signals to improve citation quality but also serve as fine-grained attributions. Experiments on the ALCE benchmark demonstrate the efficacy of FRONT in generating superior grounded responses and highly supportive citations. With LLaMA-2-7B, the framework significantly outperforms all the baselines, achieving an average of 14.21% improvement in citation quality across all datasets, even surpassing ChatGPT.

pdf bib
CogGPT: Unleashing the Power of Cognitive Dynamics on Large Language Models
Yaojia Lv | Haojie Pan | Zekun Wang | Jiafeng Liang | Yuanxing Liu | Ruiji Fu | Ming Liu | Zhongyuan Wang | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2024

Cognitive dynamics, which refer to the evolution in human cognitive processes, are pivotal to advance human understanding of the world. Recent advancements in large language models (LLMs) highlight their potential for cognitive simulation. However, these LLM-based cognitive studies primarily focus on replicating human cognition in specific contexts, overlooking the inherently dynamic nature of cognition. To bridge this gap, we explore the cognitive dynamics of LLMs and present a corresponding task inspired by longitudinal studies. Toward the task, we develop CogBench, a novel benchmark to assess the cognitive dynamics of LLMs and validate it through participant surveys. We also design two evaluation metrics for CogBench, including Authenticity and Rationality. Recognizing the inherent static nature of LLMs, we further introduce CogGPT for the task, which features an innovative iterative cognitive mechanism to develop lifelong cognitive dynamics. Empirical results demonstrate the superiority of CogGPT over several existing methods, particularly in its ability to facilitate role-specific cognitive dynamics under continuous information flows. We will release the code and data to enable further research.

pdf bib
Towards Benchmarking Situational Awareness of Large Language Models:Comprehensive Benchmark, Evaluation and Analysis
Guo Tang | Zheng Chu | Wenxiang Zheng | Ming Liu | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2024

Situational awareness refers to the capacity to perceive and comprehend the present context and anticipate forthcoming events, which plays a critical role in aiding decision-making, anticipating potential issues, and adapting to dynamic circumstances. Nevertheless, the situational awareness capabilities of large language models have not yet been comprehensively assessed. To address this, we propose SA-Bench, a comprehensive benchmark that covers three tiers of situational awareness capabilities, covering environment perception, situation comprehension and future projection. SA-Bench provides a comprehensive evaluation to explore the situational awareness capabilities of LLMs. We conduct extensive experiments on advanced LLMs, including GPT-4, LLaMA3, Qwen1.5, among others. Our experimental results indicate that even SOTA LLMs still exhibit substantial capability gaps compared to humans. In addition, we thoroughly analysis and examine the challenges encountered by LLMs across various tasks, as well as emphasize the deficiencies they confront. We hope SA-Bench will foster research within the field of situational awareness.

pdf bib
Infrared-LLaVA: Enhancing Understanding of Infrared Images in Multi-Modal Large Language Models
Shixin Jiang | Zerui Chen | Jiafeng Liang | Yanyan Zhao | Ming Liu | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2024

Expanding the understanding capabilities of multi-modal large language models (MLLMs) for infrared modality is a challenge due to the single-modality nature and limited amount of training data. Existing methods typically construct a uniform embedding space for cross-modal alignment and leverage abundant visual image data to indirectly understand infrared images. However, they ignore the supervisory signals of infrared-modality-specific attributes, which may lead to biased understanding of infrared images. To address this issue, we propose a debating multi-agent generation system which transfers knowledge from visible images to generate infrared image-text pairs and infrared instruction data. Moreover, we construct an infrared question-answering benchmark based on common infrared tasks. Experimental results from incremental fine-tuning on existing models and our Infrared-LLaVA-7B trained from scratch on infrared data demonstrate the effectiveness of the generated data and the feasibility of the generation approach.

pdf bib
Length Extrapolation of Transformers: A Survey from the Perspective of Positional Encoding
Liang Zhao | Xiachong Feng | Xiaocheng Feng | Weihong Zhong | Dongliang Xu | Qing Yang | Hongtao Liu | Bing Qin | Ting Liu
Findings of the Association for Computational Linguistics: EMNLP 2024

Built upon the Transformer, large language models (LLMs) have captured worldwide attention due to their remarkable abilities. Nevertheless, all Transformer-based models including LLMs suffer from a preset length limit and can hardly generalize from short training sequences to longer inference ones, namely, they can not perform **length extrapolation** to handle long sequences. Thus, numerous methods have emerged to enhance the length extrapolation of Transformers. Despite the great research efforts, a systematic survey is still lacking. To fill this gap, we delve into these advances in a unified notation from the perspective of positional encoding (PE), as it has been considered the primary factor on length extrapolation. Specifically, we begin with extrapolatable PEs that have dominated this research field. Then, we dive into extrapolation methods based on them, covering position interpolation and randomized position methods. Finally, several challenges and future directions in this area are highlighted. Through this survey, We aim to enable the reader to gain a deep understanding of existing methods and provide stimuli for future research.

pdf bib
SCIR-MT’s Submission for WMT24 General Machine Translation Task
Baohang Li | Zekai Ye | Yichong Huang | Xiaocheng Feng | Bing Qin
Proceedings of the Ninth Conference on Machine Translation

This paper introduces the submission of SCIR research center of Harbin Institute of Technology participating in the WMT24 machine translation evaluation task of constrained track for English to Czech. Our approach involved a rigorous process of cleaning and deduplicating both monolingual and bilingual data, followed by a three-stage model training recipe. During the testing phase, we used the beam serach decoding method to generate a large number of candidate translations. Furthermore, we employed COMET-MBR decoding to identify optimal translations.

pdf bib
An Information Bottleneck Perspective for Effective Noise Filtering on Retrieval-Augmented Generation
Kun Zhu | Xiaocheng Feng | Xiyuan Du | Yuxuan Gu | Weijiang Yu | Haotian Wang | Qianglong Chen | Zheng Chu | Jingchang Chen | Bing Qin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-augmented generation integrates the capabilities of large language models with relevant information retrieved from an extensive corpus, yet encounters challenges when confronted with real-world noisy data. One recent solution is to train a filter module to find relevant content but only achieve suboptimal noise compression. In this paper, we propose to introduce the information bottleneck theory into retrieval-augmented generation. Our approach involves the filtration of noise by simultaneously maximizing the mutual information between compression and ground output, while minimizing the mutual information between compression and retrieved passage. In addition, we derive the formula of information bottleneck to facilitate its application in novel comprehensive evaluations, the selection of supervised fine-tuning data, and the construction of reinforcement learning rewards. Experimental results demonstrate that our approach achieves significant improvements across various question answering datasets, not only in terms of the correctness of answer generation but also in the conciseness with 2.5% compression rate.

pdf bib
Navigate through Enigmatic Labyrinth A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future
Zheng Chu | Jingchang Chen | Qianglong Chen | Weijiang Yu | Tao He | Haotian Wang | Weihua Peng | Ming Liu | Bing Qin | Ting Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reasoning, a fundamental cognitive process integral to human intelligence, has garnered substantial interest within artificial intelligence.Notably, recent studies have revealed that chain-of-thought prompting significantly enhances LLM’s reasoning capabilities, which attracts widespread attention from both academics and industry.In this paper, we systematically investigate relevant research, summarizing advanced methods through a meticulous taxonomy that offers novel perspectives.Moreover, we delve into the current frontiers and delineate the challenges and future directions, thereby shedding light on future research.Furthermore, we engage in a discussion about open questions.We hope this paper serves as an introduction for beginners and fosters future research.Resources have been made publicly available at https://github.com/zchuz/CoT-Reasoning-Survey

pdf bib
TimeBench: A Comprehensive Evaluation of Temporal Reasoning Abilities in Large Language Models
Zheng Chu | Jingchang Chen | Qianglong Chen | Weijiang Yu | Haotian Wang | Ming Liu | Bing Qin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Grasping the concept of time is a fundamental facet of human cognition, indispensable for truly comprehending the intricacies of the world.Previous studies typically focus on specific aspects of time, lacking a comprehensive temporal reasoning benchmark.To address this, we propose TimeBench, a comprehensive hierarchical temporal reasoning benchmark that covers a broad spectrum of temporal reasoning phenomena.TimeBench provides a thorough evaluation for investigating the temporal reasoning capabilities of large language models.We conduct extensive experiments on GPT-4, LLaMA2, and other popular LLMs under various settings.Our experimental results indicate a significant performance gap between the state-of-the-art LLMs and humans, highlighting that there is still a considerable distance to cover in temporal reasoning.Besides, LLMs exhibit capability discrepancies across different reasoning categories.Furthermore, we thoroughly analyze the impact of multiple aspects on temporal reasoning and emphasize the associated challenges.We aspire for TimeBench to serve as a comprehensive benchmark, fostering research in temporal reasoning.Code and data are available at https://github.com/zchuz/TimeBench.

pdf bib
BeamAggR: Beam Aggregation Reasoning over Multi-source Knowledge for Multi-hop Question Answering
Zheng Chu | Jingchang Chen | Qianglong Chen | Haotian Wang | Kun Zhu | Xiyuan Du | Weijiang Yu | Ming Liu | Bing Qin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have demonstrated strong reasoning capabilities.Nevertheless, they still suffer from factual errors when tackling knowledge-intensive tasks.Retrieval-augmented reasoning represents a promising approach.However, significant challenges still persist, including inaccurate and insufficient retrieval for complex questions, as well as difficulty in integrating multi-source knowledge.To address this, we propose Beam Aggregation Reasoning (BeamAggR), a reasoning framework for knowledge-intensive multi-hop QA.BeamAggR explores and prioritizes promising answers at each hop of question.Concretely, we parse the complex questions into trees, which include atom and composite questions, followed by bottom-up reasoning.For atomic questions, the LLM conducts reasoning on multi-source knowledge to get answer candidates.For composite questions, the LLM combines beam candidates, explores multiple reasoning paths through probabilistic aggregation, and prioritizes the most promising trajectory.Extensive experiments on four open-domain multi-hop reasoning datasets show that our method significantly outperforms SOTA methods by 8.5%.Furthermore, our analysis reveals that BeamAggR elicits better knowledge collaboration and answer aggregation.

pdf bib
Planning Like Human: A Dual-process Framework for Dialogue Planning
Tao He | Lizi Liao | Yixin Cao | Yuanxing Liu | Ming Liu | Zerui Chen | Bing Qin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In proactive dialogue, the challenge lies not just in generating responses but in steering conversations toward predetermined goals, a task where Large Language Models (LLMs) typically struggle due to their reactive nature. Traditional approaches to enhance dialogue planning in LLMs, ranging from elaborate prompt engineering to the integration of policy networks, either face efficiency issues or deliver suboptimal performance. Inspired by the dual-process theory in psychology, which identifies two distinct modes of thinking—intuitive (fast) and analytical (slow), we propose the Dual-Process Dialogue Planning (DPDP) framework. DPDP embodies this theory through two complementary planning systems: an instinctive policy model for familiar contexts and a deliberative Monte Carlo Tree Search (MCTS) mechanism for complex, novel scenarios. This dual strategy is further coupled with a novel two-stage training regimen: offline Reinforcement Learning for robust initial policy model formation followed by MCTS-enhanced on-the-fly learning, which ensures a dynamic balance between efficiency and strategic depth. Our empirical evaluations across diverse dialogue tasks affirm DPDP’s superiority in achieving both high-quality dialogues and operational efficiency, outpacing existing methods.

pdf bib
Self-Evolving GPT: A Lifelong Autonomous Experiential Learner
Jinglong Gao | Xiao Ding | Yiming Cui | Jianbai Zhao | Hepeng Wang | Ting Liu | Bing Qin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

To improve the performance of large language models (LLMs), researchers have explored providing LLMs with textual task-solving experience via prompts. However, they rely on manual efforts to acquire and apply such experience for each task, which is not feasible for the growing demand for LLMs and the variety of user questions.To address this issue, we design a lifelong autonomous experiential learning framework based on LLMs to explore whether LLMs can imitate human ability for learning and utilizing experience. It autonomously learns and accumulates experience through experience transfer and induction, categorizing the types of input questions to select which accumulated experience to employ for them.Experimental results on six widely used NLP datasets show that our framework performs reliably in each intermediate step and effectively improves the performance of GPT-3.5 and GPT-4. This validates the feasibility of using LLMs to mimic human experiential learning and application capabilities, offering a new path worth further exploration for the evolution of machine intelligence. Additionally, we provide a detailed analysis of the behavior of our framework at each step.We will open source codes after the acceptance, fostering open research in the NLP community and beyond.

pdf bib
SAPT: A Shared Attention Framework for Parameter-Efficient Continual Learning of Large Language Models
Weixiang Zhao | Shilong Wang | Yulin Hu | Yanyan Zhao | Bing Qin | Xuanyu Zhang | Qing Yang | Dongliang Xu | Wanxiang Che
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The continual learning (CL) ability is vital for deploying large language models (LLMs) in the dynamic world. Existing methods devise the learning module to acquire task-specific knowledge with parameter-efficient tuning (PET) block and the selection module to pick out the corresponding one for the testing input, aiming at handling the challenges of catastrophic forgetting and knowledge transfer in CL. However, these methods tend to address only one of the challenges, ignoring the potential of aligning the two modules to effectively address catastrophic forgetting and knowledge transfer simultaneously. To this end, we propose a novel Shared Attention Framework (SAPT), to align the PET learning and selection via the Shared Attentive Learning & Selection module. Extensive Experiments on two CL benchmarks demonstrate the superiority of SAPT. Moreover, SAPT consistently demonstrates its superiority when we scale it to different model sizes (from 770M to 13B), different model architectures (T5 and LLaMA-2) and unseen tasks.

pdf bib
Investigating and Mitigating the Multimodal Hallucination Snowballing in Large Vision-Language Models
Weihong Zhong | Xiaocheng Feng | Liang Zhao | Qiming Li | Lei Huang | Yuxuan Gu | Weitao Ma | Yuan Xu | Bing Qin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Though advanced in understanding visual information with human languages, Large Vision-Language Models (LVLMs) still suffer from multimodal hallucinations. A natural concern is that during multimodal interaction, the generated hallucinations could influence the LVLMs’ subsequent generation. Thus, we raise a question: When presented with a query relevant to the previously generated hallucination, will LVLMs be misled and respond incorrectly, even though the ground visual information exists? To answer this, we propose a framework called \\textitMMHalSnowball to evaluate LVLMs’ behaviors when encountering generated hallucinations, where LVLMs are required to answer specific visual questions within a curated hallucinatory conversation. Crucially, our experiment shows that the performance of open-source LVLMs drops by at least 31\\%, indicating that LVLMs are prone to accept the generated hallucinations and make false claims that they would not have supported without distractions. We term this Multimodal Hallucination Snowballing. To mitigate this issue, we further propose a training-free method called Residual Visual Decoding, where we revise the output distribution of LVLMs with the one derived from the residual visual input, providing models with direct access to the visual information. Experiments show that our method can mitigate more than 24\\% of the snowballed multimodal hallucination while maintaining capabilities.

pdf bib
Causal-Guided Active Learning for Debiasing Large Language Models
Zhouhao Sun | Li Du | Xiao Ding | Yixuan Ma | Yang Zhao | Kaitao Qiu | Ting Liu | Bing Qin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Although achieving promising performance, recent analyses show that current generative large language models (LLMs) may still capture dataset biases and utilize them for generation, leading to poor generalizability and harmfulness of LLMs. However, due to the diversity of dataset biases and the over-optimization problem, previous prior-knowledge-based debiasing methods and fine-tuning-based debiasing methods may not be suitable for current LLMs.To address this issue, we explore combining active learning with the causal mechanisms and propose a casual-guided active learning (CAL) framework, which utilizes LLMs itself to automatically and autonomously identify informative biased samples and induce the bias patterns. Then a cost-effective and efficient in-context learning based method is employed to prevent LLMs from utilizing dataset biases during generation.Experimental results show that CAL can effectively recognize typical biased instances and induce various bias patterns for debiasing LLMs.

pdf bib
Decompose, Prioritize, and Eliminate: Dynamically Integrating Diverse Representations for Multimodal Named Entity Recognition
Zihao Zheng | Zihan Zhang | Zexin Wang | Ruiji Fu | Ming Liu | Zhongyuan Wang | Bing Qin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multi-modal Named Entity Recognition, a fundamental task for multi-modal knowledge graph construction, requires integrating multi-modal information to extract named entities from text. Previous research has explored the integration of multi-modal representations at different granularities. However, they struggle to integrate all these multi-modal representations to provide rich contextual information to improve multi-modal named entity recognition. In this paper, we propose DPE-MNER, which is an iterative reasoning framework that dynamically incorporates all the diverse multi-modal representations following the strategy of “decompose, prioritize, and eliminate”. Within the framework, the fusion of diverse multi-modal representations is decomposed into hierarchically connected fusion layers that are easier to handle. The incorporation of multi-modal information prioritizes transitioning from “easy-to-hard” and “coarse-to-fine”. The explicit modeling of cross-modal relevance eliminate the irrelevances that will mislead the MNER prediction. Extensive experiments on two public datasets have demonstrated the effectiveness of our approach.

pdf bib
ESDM: Early Sensing Depression Model in Social Media Streams
Bichen Wang | Yuzhe Zi | Yanyan Zhao | Pengfei Deng | Bing Qin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Depression impacts millions worldwide, with increasing efforts to use social media data for early detection and intervention. Traditional Risk Detection (TRD) uses a user’s complete posting history for predictions, while Early Risk Detection (ERD) seeks early detection in a user’s posting history, emphasizing the importance of prediction earliness. However, ERD remains relatively underexplored due to challenges in balancing accuracy and earliness, especially with evolving partial data. To address this, we introduce the Early Sensing Depression Model (ESDM), which comprises two modules classification with partial information module (CPI) and decision for classification moment module (DMC), alongside an early detection loss function. Experiments show ESDM outperforms benchmarks in both earliness and accuracy.

pdf bib
Gradient Consistency-based Parameter Allocation for Multilingual Neural Machine Translation
Wenshuai Huo | Xiaocheng Feng | Yichong Huang | Chengpeng Fu | Hui Wang | Bing Qin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multilingual neural machine translation handles the translation of multiple languages with one unified model. However, this joint-training paradigm incurs the notorious issue of parameter interference, where the model compromises with the language diversity to find a common solution. Recent research has explored avoiding this problem by selecting certain parameters for each language direction from the original model to form language-specific sub-networks. However, determining how many parameters to choose and which parameters to select is still a serious challenge. In this work, we propose an approach called CaPA (Consistency-based Parameter Allocation), which dynamically allocates parameters of appropriate scale to each language direction based on the consistency between the gradient of the individual language and the average gradient. Specifically, CaPA allocates more parameters to languages with higher gradient consistency as these languages tend to have a more positive impact on other languages. Furthermore, considering the varying levels of interference across different parts of the model, we propose an adaptive parameter allocation based on module-level gradient consistency. Experimental results show the correlation between gradient consistency and parameter interference, as well as the effectiveness of our proposed method.

pdf bib
RU22Fact: Optimizing Evidence for Multilingual Explainable Fact-Checking on Russia-Ukraine Conflict
Yirong Zeng | Xiao Ding | Yi Zhao | Xiangyu Li | Jie Zhang | Chao Yao | Ting Liu | Bing Qin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Fact-checking is the task of verifying the factuality of a given claim by examining the available evidence. High-quality evidence plays a vital role in enhancing fact-checking systems and facilitating the generation of explanations that are understandable to humans. However, the provision of both sufficient and relevant evidence for explainable fact-checking systems poses a challenge. To tackle this challenge, we propose a method based on a Large Language Model to automatically retrieve and summarize evidence from the Web. Furthermore, we construct RU22Fact, a novel multilingual explainable fact-checking dataset on the Russia-Ukraine conflict in 2022 of 16K samples, each containing real-world claims, optimized evidence, and referenced explanation. To establish a baseline for our dataset, we also develop an end-to-end explainable fact-checking system to verify claims and generate explanations. Experimental results demonstrate the prospect of optimized evidence in increasing fact-checking performance and also indicate the possibility of further progress in the end-to-end claim verification and explanation generation tasks.

pdf bib
SmartTrim: Adaptive Tokens and Attention Pruning for Efficient Vision-Language Models
Zekun Wang | Jingchang Chen | Wangchunshu Zhou | Haichao Zhu | Jiafeng Liang | Liping Shan | Ming Liu | Dongliang Xu | Qing Yang | Bing Qin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Despite achieving remarkable performance on various vision-language tasks, Transformer-based Vision-Language Models (VLMs) suffer from redundancy in inputs and parameters, significantly hampering their efficiency in real-world applications. Moreover, the degree of redundancy in token representations and model parameters, such as attention heads, varies significantly for different inputs. In light of the challenges, we propose SmartTrim, an adaptive acceleration framework for VLMs, which adjusts the computational overhead per instance. Specifically, we integrate lightweight modules into the original backbone to identify and prune redundant token representations and attention heads within each layer. Furthermore, we devise a self-distillation strategy to enhance the consistency between the predictions of the pruned model and its fully-capacity counterpart. Experimental results across various vision-language tasks consistently demonstrate that SmartTrim accelerates the original model by 2-3 times with minimal performance degradation, highlighting the effectiveness and efficiency compared to previous approaches. Code will be available at https://github.com/kugwzk/SmartTrim.

pdf bib
Towards Generalizable and Faithful Logic Reasoning over Natural Language via Resolution Refutation
Zhouhao Sun | Xiao Ding | Li Du | Bibo Cai | Jinglong Gao | Ting Liu | Bing Qin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) have achieved significant performance in various natural language reasoning tasks. However, they still struggle with performing first-order logic reasoning over formal logical theories expressed in natural language. This is because the previous LLMs-based reasoning systems have the theoretical incompleteness issue. As a result, it can only address a limited set of simple reasoning problems, which significantly decreases their generalization ability. To address this issue, we propose a novel framework, named Generalizable and Faithful Reasoner (GFaiR), which introduces the paradigm of resolution refutation. Resolution refutation has the capability to solve all first-order logic reasoning problems by extending reasoning rules and employing the principle of proof by contradiction, so our system’s completeness can be improved by introducing resolution refutation. Experimental results demonstrate that our system outperforms previous works by achieving state-of-the-art performances in complex scenarios while maintaining performances in simple scenarios. Besides, we observe that GFaiR is faithful to its reasoning process.

2023

pdf bib
Towards Stable Natural Language Understanding via Information Entropy Guided Debiasing
Li Du | Xiao Ding | Zhouhao Sun | Ting Liu | Bing Qin | Jingshuo Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Although achieving promising performance, current Natural Language Understanding models tend to utilize dataset biases instead of learning the intended task, which always leads to performance degradation on out-of-distribution (OOD) samples. Toincrease the performance stability, previous debiasing methods empirically capture bias features from data to prevent the model from corresponding biases. However, our analyses show that the empirical debiasing methods may fail to capture part of the potential dataset biases and mistake semantic information of input text as biases, which limits the effectiveness of debiasing. To address these issues, we propose a debiasing framework IEGDB that comprehensively detects the dataset biases to induce a set of biased features, and then purifies the biased features with the guidance of information entropy. Experimental results show that IEGDB can consistently improve the stability of performance on OOD datasets for a set of widely adopted NLU models.

pdf bib
Towards Higher Pareto Frontier in Multilingual Machine Translation
Yichong Huang | Xiaocheng Feng | Xinwei Geng | Baohang Li | Bing Qin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multilingual neural machine translation has witnessed remarkable progress in recent years. However, the long-tailed distribution of multilingual corpora poses a challenge of Pareto optimization, i.e., optimizing for some languages may come at the cost of degrading the performance of others. Existing balancing training strategies are equivalent to a series of Pareto optimal solutions, which trade off on a Pareto frontierIn Pareto optimization, Pareto optimal solutions refer to solutions in which none of the objectives can be improved without sacrificing at least one of the other objectives. The set of all Pareto optimal solutions forms a Pareto frontier..In this work, we propose a new training framework, Pareto Mutual Distillation (Pareto-MD), towards pushing the Pareto frontier outwards rather than making trade-offs. Specifically, Pareto-MD collaboratively trains two Pareto optimal solutions that favor different languages and allows them to learn from the strengths of each other via knowledge distillation. Furthermore, we introduce a novel strategy to enable stronger communication between Pareto optimal solutions and broaden the applicability of our approach. Experimental results on the widely-used WMT and TED datasets show that our method significantly pushes the Pareto frontier and outperforms baselines by up to +2.46 BLEUOur code will be released upon acceptance..

pdf bib
Controllable Text Generation via Probability Density Estimation in the Latent Space
Yuxuan Gu | Xiaocheng Feng | Sicheng Ma | Lingyuan Zhang | Heng Gong | Weihong Zhong | Bing Qin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Previous work on controllable text generation has explored the idea of control from the latent space, such as optimizing a representation with attribute-specific classifiers or sampling one from relevant discrete samples. However, they cannot effectively model a complex space with diverse attributes, high dimensionality, and asymmetric structure, leaving subsequent controls unsatisfying. In this work, we propose a novel control framework using probability density estimation in the latent space. Our method utilizes an invertible transformation function, the Normalizing Flow, that maps the complex distributions in the latent space to simple Gaussian distributions in the prior space. Thus, we can perform sophisticated and flexible controls in the prior space and feed the control effects back into the latent space owing to the bijection property of invertible transformations. Experiments on single-attribute and multi-attribute control reveal that our method outperforms several strong baselines on attribute relevance and text quality, achieving a new SOTA. Further analysis of control strength adjustment demonstrates the flexibility of our control strategy.

pdf bib
UniCoRN: Unified Cognitive Signal ReconstructioN bridging cognitive signals and human language
Nuwa Xi | Sendong Zhao | Haochun Wang | Chi Liu | Bing Qin | Ting Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Decoding text stimuli from cognitive signals (e.g. fMRI) enhances our understanding of the human language system, paving the way for building versatile Brain-Computer Interface. However, existing studies largely focus on decoding individual word-level fMRI volumes from a restricted vocabulary, which is far too idealized for real-world application. In this paper, we propose fMRI2text, the first open-vocabulary task aiming to bridge fMRI time series and human language. Furthermore, to explore the potential of this new task, we present a baseline solution, UniCoRN: the Unified Cognitive Signal ReconstructioN for Brain Decoding. By reconstructing both individual time points and time series, UniCoRN establishes a robust encoder for cognitive signals (fMRI & EEG). Leveraging a pre-trained language model as decoder, UniCoRN proves its efficacy in decoding coherent text from fMRI series across various split settings. Our model achieves a 34.77% BLEU score on fMRI2text, and a 37.04% BLEU when generalized to EEG-to-text decoding, thereby surpassing the former baseline. Experimental results indicate the feasibility of decoding consecutive fMRI volumes, and the effectiveness of decoding different cognitive signals using a unified structure.

pdf bib
NoisywikiHow: A Benchmark for Learning with Real-world Noisy Labels in Natural Language Processing
Tingting Wu | Xiao Ding | Minji Tang | Hao Zhang | Bing Qin | Ting Liu
Findings of the Association for Computational Linguistics: ACL 2023

Large-scale datasets in the real world inevitably involve label noise. Deep models can gradually overfit noisy labels and thus degrade model generalization. To mitigate the effects of label noise, learning with noisy labels (LNL) methods are designed to achieve better generalization performance. Due to the lack of suitable datasets, previous studies have frequently employed synthetic label noise to mimic real-world label noise. However, synthetic noise is not instance-dependent, making this approximation not always effective in practice. Recent research has proposed benchmarks for learning with real-world noisy labels. However, the noise sources within may be single or fuzzy, making benchmarks different from data with heterogeneous label noises in the real world. To tackle these issues, we contribute NoisywikiHow, the largest NLP benchmark built with minimal supervision. Specifically, inspired by human cognition, we explicitly construct multiple sources of label noise to imitate human errors throughout the annotation, replicating real-world noise, whose corruption is affected by both ground-truth labels and instances. Moreover, we provide a variety of noise levels to support controlled experiments on noisy data, enabling us to evaluate LNL methods systematically and comprehensively. After that, we conduct extensive multi-dimensional experiments on a broad range of LNL methods, obtaining new and intriguing findings.

pdf bib
Improved Visual Story Generation with Adaptive Context Modeling
Zhangyin Feng | Yuchen Ren | Xinmiao Yu | Xiaocheng Feng | Duyu Tang | Shuming Shi | Bing Qin
Findings of the Association for Computational Linguistics: ACL 2023

Diffusion models developed on top of powerful text-to-image generation models like Stable Diffusion achieve remarkable success in visual story generation. However, the best-performing approach considers historically generated results as flattened memory cells, ignoring the fact that not all preceding images contribute equally to the generation of the characters and scenes at the current stage. To address this, we present a simple method that improves the leading system with adaptive context modeling, which is not only incorporated in the encoder but also adopted as additional guidance in the sampling stage to boost the global consistency of the generated story. We evaluate our model on PororoSV and FlintstonesSV datasets and show that our approach achieves state-of-the-art FID scores on both story visualization and continuation scenarios. We conduct detailed model analysis and show that our model excels at generating semantically consistent images for stories.

pdf bib
TransESC: Smoothing Emotional Support Conversation via Turn-Level State Transition
Weixiang Zhao | Yanyan Zhao | Shilong Wang | Bing Qin
Findings of the Association for Computational Linguistics: ACL 2023

Emotion Support Conversation (ESC) is an emerging and challenging task with the goal of reducing the emotional distress of people. Previous attempts fail to maintain smooth transitions between utterances in ESC because they ignoring to grasp the fine-grained transition information at each dialogue turn. To solve this problem, we propose to take into account turn-level state Transitions of ESC (TransESC) from three perspectives, including semantics transition, strategy transition and emotion transition, to drive the conversation in a smooth and natural way. Specifically, we construct the state transition graph with a two-step way, named transit-then-interact, to grasp such three types of turn-level transition information. Finally, they are injected into the transition aware decoder to generate more engaging responses. Both automatic and human evaluations on the benchmark dataset demonstrate the superiority of TransESC to generate more smooth and effective supportive responses. Our source code will be publicly available.

pdf bib
An Empirical Study of Sentiment-Enhanced Pre-Training for Aspect-Based Sentiment Analysis
Yice Zhang | Yifan Yang | Bin Liang | Shiwei Chen | Bing Qin | Ruifeng Xu
Findings of the Association for Computational Linguistics: ACL 2023

Aspect-Based Sentiment Analysis (ABSA) aims to recognize fine-grained opinions and sentiments of users, which is an important problem in sentiment analysis. Recent work has shown that Sentiment-enhanced Pre-Training (SPT) can substantially improve the performance of various ABSA tasks. However, there is currently a lack of comprehensive evaluation and fair comparison of existing SPT approaches. Therefore, this paper performs an empirical study to investigate the effectiveness of different SPT approaches. First, we develop an effective knowledge-mining method and leverage it to build a large-scale knowledge-annotated SPT corpus. Second, we systematically analyze the impact of integrating sentiment knowledge and other linguistic knowledge in pre-training. For each type of sentiment knowledge, we also examine and compare multiple integration methods. Finally, we conduct extensive experiments on a wide range of ABSA tasks to see how much SPT can facilitate the understanding of aspect-level sentiments.

pdf bib
A Diffusion Model for Event Skeleton Generation
Fangqi Zhu | Lin Zhang | Jun Gao | Bing Qin | Ruifeng Xu | Haiqin Yang
Findings of the Association for Computational Linguistics: ACL 2023

Event skeleton generation, aiming to induce an event schema skeleton graph with abstracted event nodes and their temporal relations from a set of event instance graphs, is a critical step in the temporal complex event schema induction task. Existing methods effectively address this task from a graph generation perspective but suffer from noise-sensitive and error accumulation, e.g., the inability to correct errors while generating schema. We, therefore, propose a novel Diffusion Event Graph Model (DEGM) to address these issues. Our DEGM is the first workable diffusion model for event skeleton generation, where the embedding and rounding techniques with a custom edge-based loss are introduced to transform a discrete event graph into learnable latent representations. Furthermore, we propose a denoising training process to maintain the model’s robustness. Consequently, DEGM derives the final schema, where error correction is guaranteed by iteratively refining the latent representations during the schema generation process. Experimental results on three IED bombing datasets demonstrate that our DEGM achieves better results than other state-of-the-art baselines. Our code and data are available at https://github.com/zhufq00/EventSkeletonGeneration.

pdf bib
Don’t Lose Yourself! Empathetic Response Generation via Explicit Self-Other Awareness
Weixiang Zhao | Yanyan Zhao | Xin Lu | Bing Qin
Findings of the Association for Computational Linguistics: ACL 2023

As a critical step to achieve human-like chatbots, empathetic response generation has attained increasing interests. Previous attempts are incomplete and not sufficient enough to elicit empathy because they only stay on the initial stage of empathy to automatically sense and simulate the feelings and thoughts of others via other-awareness. However, they ignore to include self-awareness to consider the own views of the self in their responses, which is a crucial process to achieve the empathy. To this end, we propose to generate Empathetic response with explicit Self-Other Awareness (EmpSOA). Specifically, three stages, self-other differentiation, self-other modulation and self-other generation, are devised to clearly maintain, regulate and inject the self-other aware information into the process of empathetic response generation. Both automatic and human evaluations on the benchmark dataset demonstrate the superiority of EmpSOA to generate more empathetic responses. Our source code will be publicly available.

pdf bib
Make Your Decision Convincing! A Unified Two-Stage Framework: Self-Attribution and Decision-Making
Yanrui Du | Sendong Zhao | Haochun Wang | Yuhan Chen | Rui Bai | Zewen Qiang | Muzhen Cai | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2023

Explaining black-box model behavior with natural language has achieved impressive results in various NLP tasks. Recent research has explored the utilization of subsequences from the input text as a rationale, providing users with evidence to support the model decision. Although existing frameworks excel in generating high-quality rationales while achieving high task performance, they neglect to account for the unreliable link between the generated rationale and model decision. In simpler terms, a model may make correct decisions while attributing wrong rationales, or make poor decisions while attributing correct rationales. To mitigate this issue, we propose a unified two-stage framework known as Self-Attribution and Decision-Making (SADM). Through extensive experiments on five reasoning datasets from the ERASER benchmark, we demonstrate that our framework not only establishes a more reliable link between the generated rationale and model decision but also achieves competitive results in task performance and the quality of rationale. Furthermore, we explore the potential of our framework in semi-supervised scenarios.

pdf bib
In-context Learning for Few-shot Multimodal Named Entity Recognition
Chenran Cai | Qianlong Wang | Bin Liang | Bing Qin | Min Yang | Kam-Fai Wong | Ruifeng Xu
Findings of the Association for Computational Linguistics: EMNLP 2023

Thanks in part to the availability of copious annotated resources for some entity categories, existing studies have achieved superior performance in multimodal named entity recognition (MNER). However, in the real-world scenario, it is infeasible to enumerate all entity categories in advance. Therefore, in this paper, we formulate a new few-shot multimodal named entity recognition (FewMNER) task, which aims to effectively locate and identify named entities for a text-image pair only using a small number of labeled examples. Further, we explore the merit of in-context learning (ICL) and propose a novel framework to deal with FewMNER, where three points are taken into account: i.e., converting visual modality, selecting useful examples, and designing an effective task demonstration. Specifically, we first employ an image caption model to convert images into textual descriptions, enabling large language models to absorb information from visual modality. Then, we use the ranking of the sum of similarity rankings from both text and image modalities to select k-nearest examples, which form a demonstration context. Finally, we utilize the MNER definition and the meaning of each entity category as effective instruction. Extensive experimental results demonstrate that our framework outperforms baselines under several few-shot settings.

pdf bib
Hierarchical Catalogue Generation for Literature Review: A Benchmark
Kun Zhu | Xiaocheng Feng | Xiachong Feng | Yingsheng Wu | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2023

Scientific literature review generation aims to extract and organize important information from an abundant collection of reference papers and produces corresponding reviews while lacking a clear and logical hierarchy. We observe that a high-quality catalogue-guided generation process can effectively alleviate this problem. Therefore, we present an atomic and challenging task named Hierarchical Catalogue Generation for Literature Review as the first step for review generation, which aims to produce a hierarchical catalogue of a review paper given various references. We construct a novel English Hierarchical Catalogues of Literature Reviews Dataset with 7.6k literature review catalogues and 389k reference papers. To accurately assess the model performance, we design two evaluation metrics for informativeness and similarity to ground truth from semantics and structure. Our extensive analyses verify the high quality of our dataset and the effectiveness of our evaluation metrics. We further benchmark diverse experiments on state-of-the-art summarization models like BART and large language models like ChatGPT to evaluate their capabilities. We further discuss potential directions for this task to motivate future research.

pdf bib
Examining Inter-Consistency of Large Language Models Collaboration: An In-depth Analysis via Debate
Kai Xiong | Xiao Ding | Yixin Cao | Ting Liu | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs) have shown impressive capabilities in various applications, but they still face various inconsistency issues. Existing works primarily focus on the inconsistency issues within a single LLM, while we complementarily explore the inter-consistency among multiple LLMs for collaboration. To examine whether LLMs can collaborate effectively to achieve a consensus for a shared goal, we focus on commonsense reasoning, and introduce a formal debate framework (FORD) to conduct a three-stage debate among LLMs with real-world scenarios alignment: fair debate, mismatched debate, and roundtable debate. Through extensive experiments on various datasets, LLMs can effectively collaborate to reach a consensus despite noticeable inter-inconsistencies, but imbalances in their abilities can lead to domination by superior LLMs. Leveraging a more advanced LLM like GPT-4 as an authoritative judge can boost collaboration performance. Our work contributes to understanding the inter-consistency among LLMs and lays the foundation for developing future collaboration methods. Codes and data are available at https://github.com/Waste-Wood/FORD.

pdf bib
C2D2 Dataset: A Resource for the Cognitive Distortion Analysis and Its Impact on Mental Health
Bichen Wang | Pengfei Deng | Yanyan Zhao | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2023

Cognitive distortions refer to patterns of irrational thinking that can lead to distorted perceptions of reality and mental health problems in individuals. Despite previous attempts to detect cognitive distortion through language, progress has been slow due to the lack of appropriate data. In this paper, we present the C2D2 dataset, the first expert-supervised Chinese Cognitive Distortion Dataset, which contains 7,500 cognitive distortion thoughts in everyday life scenes. Additionally, we examine the presence of cognitive distortions in social media texts shared by individuals diagnosed with mental disorders, providing insights into the association between cognitive distortions and mental health conditions. We propose that incorporating information about users’ cognitive distortions can enhance the performance of existing models mental disorder detection. We contribute to a better understanding of how cognitive distortions appear in individuals’ language and their impact on mental health.

pdf bib
Is ChatGPT a Good Causal Reasoner? A Comprehensive Evaluation
Jinglong Gao | Xiao Ding | Bing Qin | Ting Liu
Findings of the Association for Computational Linguistics: EMNLP 2023

Causal reasoning ability is crucial for numerous NLP applications. Despite the impressive emerging ability of ChatGPT in various NLP tasks, it is unclear how well ChatGPT performs in causal reasoning. In this paper, we conduct the first comprehensive evaluation of the ChatGPT’s causal reasoning capabilities. Experiments show that ChatGPT is not a good causal reasoner, but a good causal interpreter. Besides, ChatGPT has a serious hallucination on causal reasoning, possibly due to the reporting biases between causal and non-causal relationships in natural language, as well as ChatGPT’s upgrading processes, such as RLHF. The In-Context Learning (ICL) and Chain-of-Thought (COT) techniques can further exacerbate such causal hallucination. Additionally, the causal reasoning ability of ChatGPT is sensitive to the words used to express the causal concept in prompts, and close-ended prompts perform better than open-ended prompts. For events in sentences, ChatGPT excels at capturing explicit causality rather than implicit causality, and performs better in sentences with lower event density and smaller lexical distance between events.

pdf bib
An Empirical Study on Multiple Knowledge from ChatGPT for Emotion Recognition in Conversations
Geng Tu | Bin Liang | Bing Qin | Kam-Fai Wong | Ruifeng Xu
Findings of the Association for Computational Linguistics: EMNLP 2023

Multiple knowledge (e.g., co-reference, topics, emotional causes, etc) has been demonstrated effective for emotion detection. However, exploring this knowledge in Emotion Recognition in Conversations (ERC) is currently a blank slate due to the lack of annotated data and the high cost involved in obtaining such knowledge. Fortunately, the emergence of Large Language Models (LLMs) holds promise in filling this void. Therefore, we propose a Multiple Knowledge Fusion Model (MKFM) to effectively integrate such knowledge generated by LLMs for ERC and empirically study its impact on the model. Experimental results on three public datasets have demonstrated the effectiveness of multiple knowledge for ERC. Furthermore, we conduct a detailed analysis of the contribution and complementarity of this knowledge.

pdf bib
Enabling Unsupervised Neural Machine Translation with Word-level Visual Representations
Chengpeng Fu | Xiaocheng Feng | Yichong Huang | Wenshuai Huo | Hui Wang | Bing Qin | Ting Liu
Findings of the Association for Computational Linguistics: EMNLP 2023

Unsupervised neural machine translation has recently made remarkable strides, achieving impressive results with the exclusive use of monolingual corpora. Nonetheless, these methods still exhibit fundamental flaws, such as confusing similar words. A straightforward remedy to rectify this drawback is to employ bilingual dictionaries, however, high-quality bilingual dictionaries can be costly to obtain. To overcome this limitation, we propose a method that incorporates images at the word level to augment the lexical mappings. Specifically, our method inserts visual representations into the model, modifying the corresponding embedding layer information. Besides, a visible matrix is adopted to isolate the impact of images on other unrelated words. Experiments on the Multi30k dataset with over 300,000 self-collected images validate the effectiveness in generating more accurate word translation, achieving an improvement of up to +2.81 BLEU score, which is comparable or even superior to using bilingual dictionaries.

pdf bib
MTGER: Multi-view Temporal Graph Enhanced Temporal Reasoning over Time-Involved Document
Zheng Chu | Zekun Wang | Jiafeng Liang | Ming Liu | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2023

The facts and time in the document are intricately intertwined, making temporal reasoning over documents challenging. Previous work models time implicitly, making it difficult to handle such complex relationships. To address this issue, we propose MTGER, a novel Multi-view Temporal Graph Enhanced Reasoning framework for temporal reasoning over time-involved documents. Concretely, MTGER explicitly models the temporal relationships among facts by multi-view temporal graphs. On the one hand, the heterogeneous temporal graphs explicitly model the temporal and discourse relationships among facts; on the other hand, the multi-view mechanism captures both time-focused and fact-focused information, allowing the two views to complement each other through adaptive fusion. To further improve the implicit reasoning capability of the model, we design a self-supervised time-comparing objective. Extensive experimental results demonstrate the effectiveness of our method on the TimeQA and SituatedQA datasets. Furthermore, MTGER gives more consistent answers under question perturbations.

pdf bib
Learning to Describe for Predicting Zero-shot Drug-Drug Interactions
Fangqi Zhu | Yongqi Zhang | Lei Chen | Bing Qin | Ruifeng Xu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Adverse drug-drug interactions (DDIs) can compromise the effectiveness of concurrent drug administration, posing a significant challenge in healthcare. As the development of new drugs continues, the potential for unknown adverse effects resulting from DDIs becomes a growing concern. Traditional computational methods for DDI prediction may fail to capture interactions for new drugs due to the lack of knowledge. In this paper, we introduce a new problem setup as zero-shot DDI prediction that deals with the case of new drugs. Leveraging textual information from online databases like DrugBank and PubChem, we propose an innovative approach TextDDI with a language model-based DDI predictor and a reinforcement learning (RL)-based information selector, enabling the selection of concise and pertinent text for accurate DDI prediction on new drugs. Empirical results show the benefits of the proposed approach on several settings including zero-shot and few-shot DDI prediction, and the selected texts are semantically relevant. Our code and data are available at https://github.com/zhufq00/DDIs-Prediction.

pdf bib
HIT-SCIR at WASSA 2023: Empathy and Emotion Analysis at the Utterance-Level and the Essay-Level
Xin Lu | Zhuojun Li | Yanpeng Tong | Yanyan Zhao | Bing Qin
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

This paper introduces the participation of team HIT-SCIR to the WASSA 2023 Shared Task on Empathy Detection and Emotion Classification and Personality Detection in Interactions. We focus on three tracks: Track 1 (Empathy and Emotion Prediction in Conversations, CONV), Track 2 (Empathy Prediction, EMP) and Track 3 (Emotion Classification, EMO), and designed three different models to address them separately. For Track 1, we designed a direct fine-tuning DeBERTa model for three regression tasks at the utterance-level. For Track 2, we designed a multi-task learning RoBERTa model for two regression tasks at the essay-level. For Track 3, we designed a RoBERTa model with data augmentation for the classification task at the essay-level. Finally, our team ranked 1st in the Track 1 (CONV), 5th in the Track 2 (EMP) and 3rd in the Track 3 (EMO) in the evaluation phase.

2022

pdf bib
MSAMSum: Towards Benchmarking Multi-lingual Dialogue Summarization
Xiachong Feng | Xiaocheng Feng | Bing Qin
Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

Dialogue summarization helps users capture salient information from various types of dialogues has received much attention recently. However, current works mainly focus on English dialogue summarization, leaving other languages less well explored. Therefore, we present a multi-lingual dialogue summarization dataset, namely MSAMSum, which covers dialogue-summary pairs in six languages. Specifically, we derive MSAMSum from the standard SAMSum using sophisticated translation techniques and further employ two methods to ensure the integral translation quality and summary factual consistency. Given the proposed MSAMum, we systematically set up five multi-lingual settings for this task, including a novel mix-lingual dialogue summarization setting. To illustrate the utility of our dataset, we benchmark various experiments with pre-trained models under different settings and report results in both supervised and zero-shot manners. We also discuss some future works towards this task to motivate future researches.

pdf bib
e-CARE: a New Dataset for Exploring Explainable Causal Reasoning
Li Du | Xiao Ding | Kai Xiong | Ting Liu | Bing Qin
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Understanding causality has vital importance for various Natural Language Processing (NLP) applications. Beyond the labeled instances, conceptual explanations of the causality can provide deep understanding of the causal fact to facilitate the causal reasoning process. However, such explanation information still remains absent in existing causal reasoning resources. In this paper, we fill this gap by presenting a human-annotated explainable CAusal REasoning dataset (e-CARE), which contains over 20K causal reasoning questions, together with natural language formed explanations of the causal questions. Experimental results show that generating valid explanations for causal facts still remains especially challenging for the state-of-the-art models, and the explanation information can be helpful for promoting the accuracy and stability of causal reasoning models.

pdf bib
A Distributional Lens for Multi-Aspect Controllable Text Generation
Yuxuan Gu | Xiaocheng Feng | Sicheng Ma | Lingyuan Zhang | Heng Gong | Bing Qin
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multi-aspect controllable text generation is a more challenging and practical task than single-aspect control. Existing methods achieve complex multi-aspect control by fusing multiple controllers learned from single-aspect, but suffer from attribute degeneration caused by the mutual interference of these controllers. To address this, we provide observations on attribute fusion from a distributional perspective and propose to directly search for the intersection areas of multiple attribute distributions as their combination for generation. Our method first estimates the attribute space with an autoencoder structure. Afterward, we iteratively approach the intersections by jointly minimizing distances to points representing different attributes. Finally, we map them to attribute-relevant sentences with a prefix-tuning-based decoder. Experiments on the three-aspect control task, including sentiment, topic, and detoxification aspects, reveal that our method outperforms several strong baselines on attribute relevance and text quality and achieves the SOTA. Further analysis also supplies some explanatory support for the effectiveness of our approach.

pdf bib
Face-Sensitive Image-to-Emotional-Text Cross-modal Translation for Multimodal Aspect-based Sentiment Analysis
Hao Yang | Yanyan Zhao | Bing Qin
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Aspect-level multimodal sentiment analysis, which aims to identify the sentiment of the target aspect from multimodal data, recently has attracted extensive attention in the community of multimedia and natural language processing. Despite the recent success in textual aspect-based sentiment analysis, existing models mainly focused on utilizing the object-level semantic information in the image but ignore explicitly using the visual emotional cues, especially the facial emotions. How to distill visual emotional cues and align them with the textual content remains a key challenge to solve the problem. In this work, we introduce a face-sensitive image-to-emotional-text translation (FITE) method, which focuses on capturing visual sentiment cues through facial expressions and selectively matching and fusing with the target aspect in textual modality. To the best of our knowledge, we are the first that explicitly utilize the emotional information from images in the multimodal aspect-based sentiment analysis task. Experiment results show that our method achieves state-of-the-art results on the Twitter-2015 and Twitter-2017 datasets. The improvement demonstrates the superiority of our model in capturing aspect-level sentiment in multimodal data with facial expressions.

pdf bib
ReCo: Reliable Causal Chain Reasoning via Structural Causal Recurrent Neural Networks
Kai Xiong | Xiao Ding | Zhongyang Li | Li Du | Ting Liu | Bing Qin | Yi Zheng | Baoxing Huai
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Causal chain reasoning (CCR) is an essential ability for many decision-making AI systems, which requires the model to build reliable causal chains by connecting causal pairs. However, CCR suffers from two main transitive problems: threshold effect and scene drift. In other words, the causal pairs to be spliced may have a conflicting threshold boundary or scenario.To address these issues, we propose a novel Reliable Causal chain reasoning framework (ReCo), which introduces exogenous variables to represent the threshold and scene factors of each causal pair within the causal chain, and estimates the threshold and scene contradictions across exogenous variables via structural causal recurrent neural networks (SRNN). Experiments show that ReCo outperforms a series of strong baselines on both Chinese and English CCR datasets. Moreover, by injecting reliable causal chain knowledge distilled by ReCo, BERT can achieve better performances on four downstream causal-related tasks than BERT models enhanced by other kinds of knowledge.

pdf bib
Unifying the Convergences in Multilingual Neural Machine Translation
Yichong Huang | Xiaocheng Feng | Xinwei Geng | Bing Qin
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Although all-in-one-model multilingual neural machine translation (MNMT) has achieved remarkable progress, the convergence inconsistency in the joint training is ignored, i.e., different language pairs reaching convergence in different epochs. This leads to the trained MNMT model over-fitting low-resource language translations while under-fitting high-resource ones. In this paper, we propose a novel training strategy named LSSD (LanguageSpecific Self-Distillation), which can alleviate the convergence inconsistency and help MNMT models achieve the best performance on each language pair simultaneously. Specifically, LSSD picks up language-specific best checkpoints for each language pair to teach the current model on the fly. Furthermore, we systematically explore three sample-level manipulations of knowledge transferring. Experimental results on three datasets show that LSSD obtains consistent improvements towards all language pairs and achieves the state-of-the-art.

pdf bib
STGN: an Implicit Regularization Method for Learning with Noisy Labels in Natural Language Processing
Tingting Wu | Xiao Ding | Minji Tang | Hao Zhang | Bing Qin | Ting Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Noisy labels are ubiquitous in natural language processing (NLP) tasks. Existing work, namely learning with noisy labels in NLP, is often limited to dedicated tasks or specific training procedures, making it hard to be widely used. To address this issue, SGD noise has been explored to provide a more general way to alleviate the effect of noisy labels by involving benign noise in the process of stochastic gradient descent. However, previous studies exert identical perturbation for all samples, which may cause overfitting on incorrect ones or optimizing correct ones inadequately. To facilitate this, we propose a novel stochastic tailor-made gradient noise (STGN), mitigating the effect of inherent label noise by introducing tailor-made benign noise for each sample. Specifically, we investigate multiple principles to precisely and stably discriminate correct samples from incorrect ones and thus apply different intensities of perturbation to them. A detailed theoretical analysis shows that STGN has good properties, beneficial for model generalization. Experiments on three different NLP tasks demonstrate the effectiveness and versatility of STGN. Also, STGN can boost existing robust training methods.

pdf bib
Distilled Dual-Encoder Model for Vision-Language Understanding
Zekun Wang | Wenhui Wang | Haichao Zhu | Ming Liu | Bing Qin | Furu Wei
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

On vision-language understanding (VLU) tasks, fusion-encoder vision-language models achieve superior results but sacrifice efficiency because of the simultaneous encoding of images and text. On the contrary, the dual encoder model that separately encodes images and text has the advantage in efficiency, while failing on VLU tasks due to the lack of deep cross-modal interactions. To get the best of both worlds, we propose DiDE, a framework that distills the knowledge of the fusion-encoder teacher model into the dual-encoder student model. Since the cross-modal interaction is the key to the superior performance of teacher model but is absent in the student model, we encourage the student not only to mimic the predictions of teacher, but also to calculate the cross-modal attention distributions and align with the teacher. Experimental results demonstrate that DiDE is competitive with the fusion-encoder teacher model in performance (only a 1% drop) while enjoying 4 times faster inference. Further analyses reveal that the proposed cross-modal attention distillation is crucial to the success of our framework.

pdf bib
A Generative Model for End-to-End Argument Mining with Reconstructed Positional Encoding and Constrained Pointer Mechanism
Jianzhu Bao | Yuhang He | Yang Sun | Bin Liang | Jiachen Du | Bing Qin | Min Yang | Ruifeng Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Argument mining (AM) is a challenging task as it requires recognizing the complex argumentation structures involving multiple subtasks.To handle all subtasks of AM in an end-to-end fashion, previous works generally transform AM into a dependency parsing task.However, such methods largely require complex pre- and post-processing to realize the task transformation.In this paper, we investigate the end-to-end AM task from a novel perspective by proposing a generative framework, in which the expected outputs of AM are framed as a simple target sequence. Then, we employ a pre-trained sequence-to-sequence language model with a constrained pointer mechanism (CPM) to model the clues for all the subtasks of AM in the light of the target sequence. Furthermore, we devise a reconstructed positional encoding (RPE) to alleviate the order biases induced by the autoregressive generation paradigm.Experimental results show that our proposed framework achieves new state-of-the-art performance on two AM benchmarks.

pdf bib
Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors
Yang Wu | Yanyan Zhao | Hao Yang | Song Chen | Bing Qin | Xiaohuan Cao | Wenting Zhao
Findings of the Association for Computational Linguistics: ACL 2022

Multimodal sentiment analysis has attracted increasing attention and lots of models have been proposed. However, the performance of the state-of-the-art models decreases sharply when they are deployed in the real world. We find that the main reason is that real-world applications can only access the text outputs by the automatic speech recognition (ASR) models, which may be with errors because of the limitation of model capacity. Through further analysis of the ASR outputs, we find that in some cases the sentiment words, the key sentiment elements in the textual modality, are recognized as other words, which makes the sentiment of the text change and hurts the performance of multimodal sentiment analysis models directly. To address this problem, we propose the sentiment word aware multimodal refinement model (SWRM), which can dynamically refine the erroneous sentiment words by leveraging multimodal sentiment clues. Specifically, we first use the sentiment word position detection module to obtain the most possible position of the sentiment word in the text and then utilize the multimodal sentiment word refinement module to dynamically refine the sentiment word embeddings. The refined embeddings are taken as the textual inputs of the multimodal feature fusion module to predict the sentiment labels. We conduct extensive experiments on the real-world datasets including MOSI-Speechbrain, MOSI-IBM, and MOSI-iFlytek and the results demonstrate the effectiveness of our model, which surpasses the current state-of-the-art models on three datasets. Furthermore, our approach can be adapted for other multimodal feature fusion models easily.

pdf bib
A Graph Enhanced BERT Model for Event Prediction
Li Du | Xiao Ding | Yue Zhang | Ting Liu | Bing Qin
Findings of the Association for Computational Linguistics: ACL 2022

Predicting the subsequent event for an existing event context is an important but challenging task, as it requires understanding the underlying relationship between events. Previous methods propose to retrieve relational features from event graph to enhance the modeling of event correlation. However, the sparsity of event graph may restrict the acquisition of relevant graph information, and hence influence the model performance. To address this issue, we consider automatically building of event graph using a BERT model. To this end, we incorporate an additional structured variable into BERT to learn to predict the event connections in the training process. Hence, in the test process, the connection relationship for unseen events can be predicted by the structured variable. Results on two event prediction tasks: script event prediction and story ending prediction, show that our approach can outperform state-of-the-art baseline methods.

pdf bib
Improving Controllable Text Generation with Position-Aware Weighted Decoding
Yuxuan Gu | Xiaocheng Feng | Sicheng Ma | Jiaming Wu | Heng Gong | Bing Qin
Findings of the Association for Computational Linguistics: ACL 2022

Weighted decoding methods composed of the pretrained language model (LM) and the controller have achieved promising results for controllable text generation. However, these models often suffer from a control strength/fluency trade-off problem as higher control strength is more likely to generate incoherent and repetitive text. In this paper, we illustrate this trade-off is arisen by the controller imposing the target attribute on the LM at improper positions. And we propose a novel framework based on existing weighted decoding methods called CAT-PAW, which introduces a lightweight regulator to adjust bias signals from the controller at different decoding positions. Experiments on positive sentiment control, topic control, and language detoxification show the effectiveness of our CAT-PAW upon 4 SOTA models.

pdf bib
Masked Language Models Know Which are Popular: A Simple Ranking Strategy for Commonsense Question Answering
Xuan Luo | Chuang Fan | Yice Zhang | Wanguo Jiang | Bing Qin | Ruifeng Xu
Findings of the Association for Computational Linguistics: EMNLP 2022

We propose a simple ranking strategy to solve a generative commonsense question answering (QA) problem. Compared with multiple-choice QA, it is challenging because the answers to a question are not unique and they are supposed to be popular and diverse. Our strategy exploits the dataset itself and negative samples that we collect from WordNet to train a ranker that picks out the most popular answers for commonsense questions. The effectiveness of our strategy is verified on different pre-trained masked language models (MLMs) in a pipeline framework, where an MLM reranks the generated answers. Further, we explore an end-to-end framework where MLMs are utilized to guide the generation of generative language models (GLMs). Taking advantage of reinforcement learning, we apply policy gradient to train a GLM with the rewards fed back by an MLM. Empirical results on ProtoQA dataset demonstrate that MLMs can acquire the ability to distinguish the popular answers and improve the typical answer generation of GLMs as well.

pdf bib
面向话题的讽刺识别:新任务、新数据和新方法(Topic-Oriented Sarcasm Detection: New Task, New Dataset and New Method)
Bin Liang (梁斌) | Zijie Lin (林子杰) | Bing Qin (秦兵) | Ruifeng Xu (徐睿峰)
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“现有的文本讽刺识别研究通常只停留在句子级别的讽刺表达分类,缺乏考虑讽刺对象对讽刺表达的影响。针对这一问题,本文提出一个新的面向话题的讽刺识别任务。该任务通过话题的引入,以话题作为讽刺对象,有助于更好地理解和建模讽刺表达。对应地,本文构建了一个新的面向话题的讽刺识别数据集。这个数据集包含了707个话题,以及对应的4871个话题-评论对组。在此基础上,基于提示学习和大规模预训练语言模型,提出了一种面向话题的讽刺表达提示学习模型。在本文构建的面向话题讽刺识别数据集上的实验结果表明,相比基线模型,本文所提出的面向话题的讽刺表达提示学习模型取得了更优的性能。同时,实验分析也表明本文提出的面向话题的讽刺识别任务相比传统的句子级讽刺识别任务更具挑战性。”

pdf bib
Prompt Combines Paraphrase: Teaching Pre-trained Models to Understand Rare Biomedical Words
Haochun Wang | Chi Liu | Nuwa Xi | Sendong Zhao | Meizhi Ju | Shiwei Zhang | Ziheng Zhang | Yefeng Zheng | Bing Qin | Ting Liu
Proceedings of the 29th International Conference on Computational Linguistics

Prompt-based fine-tuning for pre-trained models has proven effective for many natural language processing tasks under few-shot settings in general domain. However, tuning with prompt in biomedical domain has not been investigated thoroughly. Biomedical words are often rare in general domain, but quite ubiquitous in biomedical contexts, which dramatically deteriorates the performance of pre-trained models on downstream biomedical applications even after fine-tuning, especially in low-resource scenarios. We propose a simple yet effective approach to helping models learn rare biomedical words during tuning with prompt. Experimental results show that our method can achieve up to 6% improvement in biomedical natural language inference task without any extra parameters or training steps using few-shot vanilla prompt settings.

pdf bib
CogBERT: Cognition-Guided Pre-trained Language Models
Xiao Ding | Bowen Chen | Li Du | Bing Qin | Ting Liu
Proceedings of the 29th International Conference on Computational Linguistics

We study the problem of integrating cognitive language processing signals (e.g., eye-tracking or EEG data) into pre-trained language models like BERT. Existing methods typically fine-tune pre-trained models on cognitive data, ignoring the semantic gap between the texts and cognitive signals. To fill the gap, we propose CogBERT, a framework that can induce fine-grained cognitive features from cognitive data and incorporate cognitive features into BERT by adaptively adjusting the weight of cognitive features for different NLP tasks. Extensive experiments show that: (1) Cognition-guided pre-trained models can consistently perform better than basic pre-trained models on ten NLP tasks. (2) Different cognitive features contribute differently to different NLP tasks. Based on this observation, we give a fine-grained explanation of why cognitive data is helpful for NLP. (3) Different transformer layers of pre-trained models should encode different cognitive features, with word-level cognitive features at the bottom and semantic-level cognitive features at the top. (4) Attention visualization demonstrates that CogBERT aligns with human gaze patterns and improves its natural language comprehension ability.

pdf bib
SSR: Utilizing Simplified Stance Reasoning Process for Robust Stance Detection
Jianhua Yuan | Yanyan Zhao | Yanyue Lu | Bing Qin
Proceedings of the 29th International Conference on Computational Linguistics

Dataset bias in stance detection tasks allows models to achieve superior performance without using targets. Most existing debiasing methods are task-agnostic, which fail to utilize task knowledge to better discriminate between genuine and bias features. Motivated by how humans tackle stance detection tasks, we propose to incorporate the stance reasoning process as task knowledge to assist in learning genuine features and reducing reliance on bias features. The full stance reasoning process usually involves identifying the span of the mentioned target and corresponding opinion expressions, such fine-grained annotations are hard and expensive to obtain. To alleviate this, we simplify the stance reasoning process to relax the granularity of annotations from token-level to sentence-level, where labels for sub-tasks can be easily inferred from existing resources. We further implement those sub-tasks by maximizing mutual information between the texts and the opinioned targets. To evaluate whether stance detection models truly understand the task from various aspects, we collect and construct a series of new test sets. Our proposed model achieves better performance than previous task-agnostic debiasing methods on most of those new test sets while maintaining comparable performances to existing stance detection models.

pdf bib
MuCDN: Mutual Conversational Detachment Network for Emotion Recognition in Multi-Party Conversations
Weixiang Zhao | Yanyan Zhao | Bing Qin
Proceedings of the 29th International Conference on Computational Linguistics

As an emerging research topic in natural language processing community, emotion recognition in multi-party conversations has attained increasing interest. Previous approaches that focus either on dyadic or multi-party scenarios exert much effort to cope with the challenge of emotional dynamics and achieve appealing results. However, since emotional interactions among speakers are often more complicated within the entangled multi-party conversations, these works are limited in capturing effective emotional clues in conversational context. In this work, we propose Mutual Conversational Detachment Network (MuCDN) to clearly and effectively understand the conversational context by separating conversations into detached threads. Specifically, two detachment ways are devised to perform context and speaker-specific modeling within detached threads and they are bridged through a mutual module. Experimental results on two datasets show that our model achieves better performance over the baseline models.

2021

pdf bib
Language Model as an Annotator: Exploring DialoGPT for Dialogue Summarization
Xiachong Feng | Xiaocheng Feng | Libo Qin | Bing Qin | Ting Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Current dialogue summarization systems usually encode the text with a number of general semantic features (e.g., keywords and topics) to gain more powerful dialogue modeling capabilities. However, these features are obtained via open-domain toolkits that are dialog-agnostic or heavily relied on human annotations. In this paper, we show how DialoGPT, a pre-trained model for conversational response generation, can be developed as an unsupervised dialogue annotator, which takes advantage of dialogue background knowledge encoded in DialoGPT. We apply DialoGPT to label three types of features on two dialogue summarization datasets, SAMSum and AMI, and employ pre-trained and non pre-trained models as our summarizers. Experimental results show that our proposed method can obtain remarkable improvements on both datasets and achieves new state-of-the-art performance on the SAMSum dataset.

pdf bib
ExCAR: Event Graph Knowledge Enhanced Explainable Causal Reasoning
Li Du | Xiao Ding | Kai Xiong | Ting Liu | Bing Qin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Prior work infers the causation between events mainly based on the knowledge induced from the annotated causal event pairs. However, additional evidence information intermediate to the cause and effect remains unexploited. By incorporating such information, the logical law behind the causality can be unveiled, and the interpretability and stability of the causal reasoning system can be improved. To facilitate this, we present an Event graph knowledge enhanced explainable CAusal Reasoning framework (ExCAR). ExCAR first acquires additional evidence information from a large-scale causal event graph as logical rules for causal reasoning. To learn the conditional probabilistic of logical rules, we propose the Conditional Markov Neural Logic Network (CMNLN) that combines the representation learning and structure learning of logical rules in an end-to-end differentiable manner. Experimental results demonstrate that ExCAR outperforms previous state-of-the-art methods. Adversarial evaluation shows the improved stability of ExCAR over baseline systems. Human evaluation shows that ExCAR can achieve a promising explainable performance.

pdf bib
Learning Event Graph Knowledge for Abductive Reasoning
Li Du | Xiao Ding | Ting Liu | Bing Qin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Abductive reasoning aims at inferring the most plausible explanation for observed events, which would play critical roles in various NLP applications, such as reading comprehension and question answering. To facilitate this task, a narrative text based abductive reasoning task 𝛼NLI is proposed, together with explorations about building reasoning framework using pretrained language models. However, abundant event commonsense knowledge is not well exploited for this task. To fill this gap, we propose a variational autoencoder based model ege-RoBERTa, which employs a latent variable to capture the necessary commonsense knowledge from event graph for guiding the abductive reasoning task. Experimental results show that through learning the external event graph knowledge, our approach outperforms the baseline methods on the 𝛼NLI task.

pdf bib
A Text-Centered Shared-Private Framework via Cross-Modal Prediction for Multimodal Sentiment Analysis
Yang Wu | Zijie Lin | Yanyan Zhao | Bing Qin | Li-Nan Zhu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Less Is More: Domain Adaptation with Lottery Ticket for Reading Comprehension
Haichao Zhu | Zekun Wang | Heng Zhang | Ming Liu | Sendong Zhao | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2021

In this paper, we propose a simple few-shot domain adaptation paradigm for reading comprehension. We first identify the lottery subnetwork structure within the Transformer-based source domain model via gradual magnitude pruning. Then, we only fine-tune the lottery subnetwork, a small fraction of the whole parameters, on the annotated target domain data for adaptation. To obtain more adaptable subnetworks, we introduce self-attention attribution to weigh parameters, beyond simply pruning the smallest magnitude parameters, which can be seen as combining structured pruning and unstructured magnitude pruning softly. Experimental results show that our method outperforms the full model fine-tuning adaptation on four out of five domains when only a small amount of annotated data available for adaptation. Moreover, introducing self-attention attribution reserves more parameters for important attention heads in the lottery subnetwork and improves the target domain model performance. Our further analyses reveal that, besides exploiting fewer parameters, the choice of subnetworks is critical to the effectiveness.

pdf bib
Retrieve, Discriminate and Rewrite: A Simple and Effective Framework for Obtaining Affective Response in Retrieval-Based Chatbots
Xin Lu | Yijian Tian | Yanyan Zhao | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2021

Obtaining affective response is a key step in building empathetic dialogue systems. This task has been studied a lot in generation-based chatbots, but the related research in retrieval-based chatbots is still in the early stage. Existing works in retrieval-based chatbots are based on Retrieve-and-Rerank framework, which have a common problem of satisfying affect label at the expense of response quality. To address this problem, we propose a simple and effective Retrieve-Discriminate-Rewrite framework. The framework replaces the reranking mechanism with a new discriminate-and-rewrite mechanism, which predicts the affect label of the retrieved high-quality response via discrimination module and further rewrites the affect unsatisfied response via rewriting module. This can not only guarantee the quality of the response, but also satisfy the given affect label. In addition, another challenge for this line of research is the lack of an off-the-shelf affective response dataset. To address this problem and test our proposed framework, we annotate a Sentimental Douban Conversation Corpus based on the original Douban Conversation Corpus. Experimental results show that our proposed framework is effective and outperforms competitive baselines.

pdf bib
Learning to Rewrite for Non-Autoregressive Neural Machine Translation
Xinwei Geng | Xiaocheng Feng | Bing Qin
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Non-autoregressive neural machine translation, which decomposes the dependence on previous target tokens from the inputs of the decoder, has achieved impressive inference speedup but at the cost of inferior accuracy. Previous works employ iterative decoding to improve the translation by applying multiple refinement iterations. However, a serious drawback is that these approaches expose the serious weakness in recognizing the erroneous translation pieces. In this paper, we propose an architecture named RewriteNAT to explicitly learn to rewrite the erroneous translation pieces. Specifically, RewriteNAT utilizes a locator module to locate the erroneous ones, which are then revised into the correct ones by a revisor module. Towards keeping the consistency of data distribution with iterative decoding, an iterative training strategy is employed to further improve the capacity of rewriting. Extensive experiments conducted on several widely-used benchmarks show that RewriteNAT can achieve better performance while significantly reducing decoding time, compared with previous iterative decoding strategies. In particular, RewriteNAT can obtain competitive results with autoregressive translation on WMT14 En-De, En-Fr and WMT16 Ro-En translation benchmarks.

pdf bib
Neural Natural Logic Inference for Interpretable Question Answering
Jihao Shi | Xiao Ding | Li Du | Ting Liu | Bing Qin
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Many open-domain question answering problems can be cast as a textual entailment task, where a question and candidate answers are concatenated to form hypotheses. A QA system then determines if the supporting knowledge bases, regarded as potential premises, entail the hypotheses. In this paper, we investigate a neural-symbolic QA approach that integrates natural logic reasoning within deep learning architectures, towards developing effective and yet explainable question answering models. The proposed model gradually bridges a hypothesis and candidate premises following natural logic inference steps to build proof paths. Entailment scores between the acquired intermediate hypotheses and candidate premises are measured to determine if a premise entails the hypothesis. As the natural logic reasoning process forms a tree-like, hierarchical structure, we embed hypotheses and premises in a Hyperbolic space rather than Euclidean space to acquire more precise representations. Empirically, our method outperforms prior work on answering multiple-choice science questions, achieving the best results on two publicly available datasets. The natural logic inference process inherently provides evidence to help explain the prediction process.

2020

pdf bib
TableGPT: Few-shot Table-to-Text Generation with Table Structure Reconstruction and Content Matching
Heng Gong | Yawei Sun | Xiaocheng Feng | Bing Qin | Wei Bi | Xiaojiang Liu | Ting Liu
Proceedings of the 28th International Conference on Computational Linguistics

Although neural table-to-text models have achieved remarkable progress with the help of large-scale datasets, they suffer insufficient learning problem with limited training data. Recently, pre-trained language models show potential in few-shot learning with linguistic knowledge learnt from pretraining on large-scale corpus. However, benefiting table-to-text generation in few-shot setting with the powerful pretrained language model faces three challenges, including (1) the gap between the task’s structured input and the natural language input for pretraining language model. (2) The lack of modeling for table structure and (3) improving text fidelity with less incorrect expressions that are contradicting to the table. To address aforementioned problems, we propose TableGPT for table-to-text generation. At first, we utilize table transformation module with template to rewrite structured table in natural language as input for GPT-2. In addition, we exploit multi-task learning with two auxiliary tasks that preserve table’s structural information by reconstructing the structure from GPT-2’s representation and improving the text’s fidelity with content matching task aligning the table and information in the generated text. By experimenting on Humans, Songs and Books, three few-shot table-to-text datasets in different domains, our model outperforms existing systems on most few-shot settings.

pdf bib
Molweni: A Challenge Multiparty Dialogues-based Machine Reading Comprehension Dataset with Discourse Structure
Jiaqi Li | Ming Liu | Min-Yen Kan | Zihao Zheng | Zekun Wang | Wenqiang Lei | Ting Liu | Bing Qin
Proceedings of the 28th International Conference on Computational Linguistics

Research into the area of multiparty dialog has grown considerably over recent years. We present the Molweni dataset, a machine reading comprehension (MRC) dataset with discourse structure built over multiparty dialog. Molweni’s source samples from the Ubuntu Chat Corpus, including 10,000 dialogs comprising 88,303 utterances. We annotate 30,066 questions on this corpus, including both answerable and unanswerable questions. Molweni also uniquely contributes discourse dependency annotations in a modified Segmented Discourse Representation Theory (SDRT; Asher et al., 2016) style for all of its multiparty dialogs, contributing large-scale (78,245 annotated discourse relations) data to bear on the task of multiparty dialog discourse parsing. Our experiments show that Molweni is a challenging dataset for current MRC models: BERT-wwm, a current, strong SQuAD 2.0 performer, achieves only 67.7% F1 on Molweni’s questions, a 20+% significant drop as compared against its SQuAD 2.0 performance.

pdf bib
An Iterative Emotion Interaction Network for Emotion Recognition in Conversations
Xin Lu | Yanyan Zhao | Yang Wu | Yijian Tian | Huipeng Chen | Bing Qin
Proceedings of the 28th International Conference on Computational Linguistics

Emotion recognition in conversations (ERC) has received much attention recently in the natural language processing community. Considering that the emotions of the utterances in conversations are interactive, previous works usually implicitly model the emotion interaction between utterances by modeling dialogue context, but the misleading emotion information from context often interferes with the emotion interaction. We noticed that the gold emotion labels of the context utterances can provide explicit and accurate emotion interaction, but it is impossible to input gold labels at inference time. To address this problem, we propose an iterative emotion interaction network, which uses iteratively predicted emotion labels instead of gold emotion labels to explicitly model the emotion interaction. This approach solves the above problem, and can effectively retain the performance advantages of explicit modeling. We conduct experiments on two datasets, and our approach achieves state-of-the-art performance.

pdf bib
HIT-SCIR at SemEval-2020 Task 5: Training Pre-trained Language Model with Pseudo-labeling Data for Counterfactuals Detection
Xiao Ding | Dingkui Hao | Yuewei Zhang | Kuo Liao | Zhongyang Li | Bing Qin | Ting Liu
Proceedings of the Fourteenth Workshop on Semantic Evaluation

We describe our system for Task 5 of SemEval 2020: Modelling Causal Reasoning in Language: Detecting Counterfactuals. Despite deep learning has achieved significant success in many fields, it still hardly drives today’s AI to strong AI, as it lacks of causation, which is a fundamental concept in human thinking and reasoning. In this task, we dedicate to detecting causation, especially counterfactuals from texts. We explore multiple pre-trained models to learn basic features and then fine-tune models with counterfactual data and pseudo-labeling data. Our team HIT-SCIR wins the first place (1st) in Sub-task 1 — Detecting Counterfactual Statements and is ranked 4th in Sub-task 2 — Detecting Antecedent and Consequence. In this paper we provide a detailed description of the approach, as well as the results obtained in this task.

pdf bib
How Does Selective Mechanism Improve Self-Attention Networks?
Xinwei Geng | Longyue Wang | Xing Wang | Bing Qin | Ting Liu | Zhaopeng Tu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Self-attention networks (SANs) with selective mechanism has produced substantial improvements in various NLP tasks by concentrating on a subset of input words. However, the underlying reasons for their strong performance have not been well explained. In this paper, we bridge the gap by assessing the strengths of selective SANs (SSANs), which are implemented with a flexible and universal Gumbel-Softmax. Experimental results on several representative NLP tasks, including natural language inference, semantic role labelling, and machine translation, show that SSANs consistently outperform the standard SANs. Through well-designed probing experiments, we empirically validate that the improvement of SSANs can be attributed in part to mitigating two commonly-cited weaknesses of SANs: word order encoding and structure modeling. Specifically, the selective mechanism improves SANs by paying more attention to content words that contribute to the meaning of the sentence.

pdf bib
Revisiting Pre-Trained Models for Chinese Natural Language Processing
Yiming Cui | Wanxiang Che | Ting Liu | Bing Qin | Shijin Wang | Guoping Hu
Findings of the Association for Computational Linguistics: EMNLP 2020

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks, and consecutive variants have been proposed to further improve the performance of the pre-trained language models. In this paper, we target on revisiting Chinese pre-trained language models to examine their effectiveness in a non-English language and release the Chinese pre-trained language model series to the community. We also propose a simple but effective model called MacBERT, which improves upon RoBERTa in several ways, especially the masking strategy that adopts MLM as correction (Mac). We carried out extensive experiments on eight Chinese NLP tasks to revisit the existing pre-trained language models as well as the proposed MacBERT. Experimental results show that MacBERT could achieve state-of-the-art performances on many NLP tasks, and we also ablate details with several findings that may help future research. https://github.com/ymcui/MacBERT

pdf bib
CodeBERT: A Pre-Trained Model for Programming and Natural Languages
Zhangyin Feng | Daya Guo | Duyu Tang | Nan Duan | Xiaocheng Feng | Ming Gong | Linjun Shou | Bing Qin | Ting Liu | Daxin Jiang | Ming Zhou
Findings of the Association for Computational Linguistics: EMNLP 2020

We present CodeBERT, a bimodal pre-trained model for programming language (PL) and natural language (NL). CodeBERT learns general-purpose representations that support downstream NL-PL applications such as natural language code search, code documentation generation, etc. We develop CodeBERT with Transformer-based neural architecture, and train it with a hybrid objective function that incorporates the pre-training task of replaced token detection, which is to detect plausible alternatives sampled from generators. This enables us to utilize both “bimodal” data of NL-PL pairs and “unimodal data, where the former provides input tokens for model training while the latter helps to learn better generators. We evaluate CodeBERT on two NL-PL applications by fine-tuning model parameters. Results show that CodeBERT achieves state-of-the-art performance on both natural language code search and code documentation generation. Furthermore, to investigate what type of knowledge is learned in CodeBERT, we construct a dataset for NL-PL probing, and evaluate in a zero-shot setting where parameters of pre-trained models are fixed. Results show that CodeBERT performs better than previous pre-trained models on NLPL probing.

pdf bib
Enhancing Content Planning for Table-to-Text Generation with Data Understanding and Verification
Heng Gong | Wei Bi | Xiaocheng Feng | Bing Qin | Xiaojiang Liu | Ting Liu
Findings of the Association for Computational Linguistics: EMNLP 2020

Neural table-to-text models, which select and order salient data, as well as verbalizing them fluently via surface realization, have achieved promising progress. Based on results from previous work, the performance bottleneck of current models lies in the stage of content planing (selecting and ordering salient content from the input). That is, performance drops drastically when an oracle content plan is replaced by a model-inferred one during surface realization. In this paper, we propose to enhance neural content planning by (1) understanding data values with contextual numerical value representations that bring the sense of value comparison into content planning; (2) verifying the importance and ordering of the selected sequence of records with policy gradient. We evaluated our model on ROTOWIRE and MLB, two datasets on this task, and results show that our model outperforms existing systems with respect to content planning metrics.

2019

pdf bib
Learning to Ask Unanswerable Questions for Machine Reading Comprehension
Haichao Zhu | Li Dong | Furu Wei | Wenhui Wang | Bing Qin | Ting Liu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Machine reading comprehension with unanswerable questions is a challenging task. In this work, we propose a data augmentation technique by automatically generating relevant unanswerable questions according to an answerable question paired with its corresponding paragraph that contains the answer. We introduce a pair-to-sequence model for unanswerable question generation, which effectively captures the interactions between the question and the paragraph. We also present a way to construct training data for our question generation models by leveraging the existing reading comprehension dataset. Experimental results show that the pair-to-sequence model performs consistently better compared with the sequence-to-sequence baseline. We further use the automatically generated unanswerable questions as a means of data augmentation on the SQuAD 2.0 dataset, yielding 1.9 absolute F1 improvement with BERT-base model and 1.7 absolute F1 improvement with BERT-large model.

pdf bib
Multi-Input Multi-Output Sequence Labeling for Joint Extraction of Fact and Condition Tuples from Scientific Text
Tianwen Jiang | Tong Zhao | Bing Qin | Ting Liu | Nitesh Chawla | Meng Jiang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Condition is essential in scientific statement. Without the conditions (e.g., equipment, environment) that were precisely specified, facts (e.g., observations) in the statements may no longer be valid. Existing ScienceIE methods, which aim at extracting factual tuples from scientific text, do not consider the conditions. In this work, we propose a new sequence labeling framework (as well as a new tag schema) to jointly extract the fact and condition tuples from statement sentences. The framework has (1) a multi-output module to generate one or multiple tuples and (2) a multi-input module to feed in multiple types of signals as sequences. It improves F1 score relatively by 4.2% on BioNLP2013 and by 6.2% on a new bio-text dataset for tuple extraction.

pdf bib
Cross-Lingual Machine Reading Comprehension
Yiming Cui | Wanxiang Che | Ting Liu | Bing Qin | Shijin Wang | Guoping Hu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Though the community has made great progress on Machine Reading Comprehension (MRC) task, most of the previous works are solving English-based MRC problems, and there are few efforts on other languages mainly due to the lack of large-scale training data. In this paper, we propose Cross-Lingual Machine Reading Comprehension (CLMRC) task for the languages other than English. Firstly, we present several back-translation approaches for CLMRC task which is straightforward to adopt. However, to exactly align the answer into source language is difficult and could introduce additional noise. In this context, we propose a novel model called Dual BERT, which takes advantage of the large-scale training data provided by rich-resource language (such as English) and learn the semantic relations between the passage and question in bilingual context, and then utilize the learned knowledge to improve reading comprehension performance of low-resource language. We conduct experiments on two Chinese machine reading comprehension datasets CMRC 2018 and DRCD. The results show consistent and significant improvements over various state-of-the-art systems by a large margin, which demonstrate the potentials in CLMRC task. Resources available: https://github.com/ymcui/Cross-Lingual-MRC

pdf bib
Enhancing Neural Data-To-Text Generation Models with External Background Knowledge
Shuang Chen | Jinpeng Wang | Xiaocheng Feng | Feng Jiang | Bing Qin | Chin-Yew Lin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent neural models for data-to-text generation rely on massive parallel pairs of data and text to learn the writing knowledge. They often assume that writing knowledge can be acquired from the training data alone. However, when people are writing, they not only rely on the data but also consider related knowledge. In this paper, we enhance neural data-to-text models with external knowledge in a simple but effective way to improve the fidelity of generated text. Besides relying on parallel data and text as in previous work, our model attends to relevant external knowledge, encoded as a temporary memory, and combines this knowledge with the context representation of data before generating words. This allows the model to infer relevant facts which are not explicitly stated in the data table from an external knowledge source. Experimental results on twenty-one Wikipedia infobox-to-text datasets show our model, KBAtt, consistently improves a state-of-the-art model on most of the datasets. In addition, to quantify when and why external knowledge is effective, we design a metric, KBGain, which shows a strong correlation with the observed performance boost. This result demonstrates the relevance of external knowledge and sparseness of original data are the main factors affecting system performance.

pdf bib
Table-to-Text Generation with Effective Hierarchical Encoder on Three Dimensions (Row, Column and Time)
Heng Gong | Xiaocheng Feng | Bing Qin | Ting Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Although Seq2Seq models for table-to-text generation have achieved remarkable progress, modeling table representation in one dimension is inadequate. This is because (1) the table consists of multiple rows and columns, which means that encoding a table should not depend only on one dimensional sequence or set of records and (2) most of the tables are time series data (e.g. NBA game data, stock market data), which means that the description of the current table may be affected by its historical data. To address aforementioned problems, not only do we model each table cell considering other records in the same row, we also enrich table’s representation by modeling each table cell in context of other cells in the same column or with historical (time dimension) data respectively. In addition, we develop a table cell fusion gate to combine representations from row, column and time dimension into one dense vector according to the saliency of each dimension’s representation. We evaluated our methods on ROTOWIRE, a benchmark dataset of NBA basketball games. Both automatic and human evaluation results demonstrate the effectiveness of our model with improvement of 2.66 in BLEU over the strong baseline and outperformance of state-of-the-art model.

2018

pdf bib
Parsing Tweets into Universal Dependencies
Yijia Liu | Yi Zhu | Wanxiang Che | Bing Qin | Nathan Schneider | Noah A. Smith
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We study the problem of analyzing tweets with universal dependencies (UD). We extend the UD guidelines to cover special constructions in tweets that affect tokenization, part-of-speech tagging, and labeled dependencies. Using the extended guidelines, we create a new tweet treebank for English (Tweebank v2) that is four times larger than the (unlabeled) Tweebank v1 introduced by Kong et al. (2014). We characterize the disagreements between our annotators and show that it is challenging to deliver consistent annotation due to ambiguity in understanding and explaining tweets. Nonetheless, using the new treebank, we build a pipeline system to parse raw tweets into UD. To overcome the annotation noise without sacrificing computational efficiency, we propose a new method to distill an ensemble of 20 transition-based parsers into a single one. Our parser achieves an improvement of 2.2 in LAS over the un-ensembled baseline and outperforms parsers that are state-of-the-art on other treebanks in both accuracy and speed.

pdf bib
Semantic Parsing with Syntax- and Table-Aware SQL Generation
Yibo Sun | Duyu Tang | Nan Duan | Jianshu Ji | Guihong Cao | Xiaocheng Feng | Bing Qin | Ting Liu | Ming Zhou
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a generative model to map natural language questions into SQL queries. Existing neural network based approaches typically generate a SQL query word-by-word, however, a large portion of the generated results is incorrect or not executable due to the mismatch between question words and table contents. Our approach addresses this problem by considering the structure of table and the syntax of SQL language. The quality of the generated SQL query is significantly improved through (1) learning to replicate content from column names, cells or SQL keywords; and (2) improving the generation of WHERE clause by leveraging the column-cell relation. Experiments are conducted on WikiSQL, a recently released dataset with the largest question- SQL pairs. Our approach significantly improves the state-of-the-art execution accuracy from 69.0% to 74.4%.

pdf bib
Distilling Knowledge for Search-based Structured Prediction
Yijia Liu | Wanxiang Che | Huaipeng Zhao | Bing Qin | Ting Liu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Many natural language processing tasks can be modeled into structured prediction and solved as a search problem. In this paper, we distill an ensemble of multiple models trained with different initialization into a single model. In addition to learning to match the ensemble’s probability output on the reference states, we also use the ensemble to explore the search space and learn from the encountered states in the exploration. Experimental results on two typical search-based structured prediction tasks – transition-based dependency parsing and neural machine translation show that distillation can effectively improve the single model’s performance and the final model achieves improvements of 1.32 in LAS and 2.65 in BLEU score on these two tasks respectively over strong baselines and it outperforms the greedy structured prediction models in previous literatures.

pdf bib
Adaptive Multi-pass Decoder for Neural Machine Translation
Xinwei Geng | Xiaocheng Feng | Bing Qin | Ting Liu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Although end-to-end neural machine translation (NMT) has achieved remarkable progress in the recent years, the idea of adopting multi-pass decoding mechanism into conventional NMT is not well explored. In this paper, we propose a novel architecture called adaptive multi-pass decoder, which introduces a flexible multi-pass polishing mechanism to extend the capacity of NMT via reinforcement learning. More specifically, we adopt an extra policy network to automatically choose a suitable and effective number of decoding passes, according to the complexity of source sentences and the quality of the generated translations. Extensive experiments on Chinese-English translation demonstrate the effectiveness of our proposed adaptive multi-pass decoder upon the conventional NMT with a significant improvement about 1.55 BLEU.

pdf bib
An AMR Aligner Tuned by Transition-based Parser
Yijia Liu | Wanxiang Che | Bo Zheng | Bing Qin | Ting Liu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In this paper, we propose a new rich resource enhanced AMR aligner which produces multiple alignments and a new transition system for AMR parsing along with its oracle parser. Our aligner is further tuned by our oracle parser via picking the alignment that leads to the highest-scored achievable AMR graph. Experimental results show that our aligner outperforms the rule-based aligner in previous work by achieving higher alignment F1 score and consistently improving two open-sourced AMR parsers. Based on our aligner and transition system, we develop a transition-based AMR parser that parses a sentence into its AMR graph directly. An ensemble of our parsers with only words and POS tags as input leads to 68.4 Smatch F1 score, which outperforms the current state-of-the-art parser.

2017

pdf bib
Benben: A Chinese Intelligent Conversational Robot
Wei-Nan Zhang | Ting Liu | Bing Qin | Yu Zhang | Wanxiang Che | Yanyan Zhao | Xiao Ding
Proceedings of ACL 2017, System Demonstrations

2016

pdf bib
SemEval-2016 Task 5: Aspect Based Sentiment Analysis
Maria Pontiki | Dimitris Galanis | Haris Papageorgiou | Ion Androutsopoulos | Suresh Manandhar | Mohammad AL-Smadi | Mahmoud Al-Ayyoub | Yanyan Zhao | Bing Qin | Orphée De Clercq | Véronique Hoste | Marianna Apidianaki | Xavier Tannier | Natalia Loukachevitch | Evgeniy Kotelnikov | Nuria Bel | Salud María Jiménez-Zafra | Gülşen Eryiğit
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

pdf bib
Aspect Level Sentiment Classification with Deep Memory Network
Duyu Tang | Bing Qin | Ting Liu
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
English-Chinese Knowledge Base Translation with Neural Network
Xiaocheng Feng | Duyu Tang | Bing Qin | Ting Liu
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Knowledge base (KB) such as Freebase plays an important role for many natural language processing tasks. English knowledge base is obviously larger and of higher quality than low resource language like Chinese. To expand Chinese KB by leveraging English KB resources, an effective way is to translate English KB (source) into Chinese (target). In this direction, two major challenges are to model triple semantics and to build a robust KB translator. We address these challenges by presenting a neural network approach, which learns continuous triple representation with a gated neural network. Accordingly, source triples and target triples are mapped in the same semantic vector space. We build a new dataset for English-Chinese KB translation from Freebase, and compare with several baselines on it. Experimental results show that the proposed method improves translation accuracy compared with baseline methods. We show that adaptive composition model improves standard solution such as neural tensor network in terms of translation accuracy.

pdf bib
Effective LSTMs for Target-Dependent Sentiment Classification
Duyu Tang | Bing Qin | Xiaocheng Feng | Ting Liu
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Target-dependent sentiment classification remains a challenge: modeling the semantic relatedness of a target with its context words in a sentence. Different context words have different influences on determining the sentiment polarity of a sentence towards the target. Therefore, it is desirable to integrate the connections between target word and context words when building a learning system. In this paper, we develop two target dependent long short-term memory (LSTM) models, where target information is automatically taken into account. We evaluate our methods on a benchmark dataset from Twitter. Empirical results show that modeling sentence representation with standard LSTM does not perform well. Incorporating target information into LSTM can significantly boost the classification accuracy. The target-dependent LSTM models achieve state-of-the-art performances without using syntactic parser or external sentiment lexicons.

pdf bib
A Language-Independent Neural Network for Event Detection
Xiaocheng Feng | Lifu Huang | Duyu Tang | Heng Ji | Bing Qin | Ting Liu
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2015

pdf bib
Transition-Based Syntactic Linearization
Yijia Liu | Yue Zhang | Wanxiang Che | Bing Qin
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Encoding World Knowledge in the Evaluation of Local Coherence
Muyu Zhang | Vanessa Wei Feng | Bing Qin | Graeme Hirst | Ting Liu | Jingwen Huang
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Document Modeling with Gated Recurrent Neural Network for Sentiment Classification
Duyu Tang | Bing Qin | Ting Liu
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Encoding Distributional Semantics into Triple-Based Knowledge Ranking for Document Enrichment
Muyu Zhang | Bing Qin | Mao Zheng | Graeme Hirst | Ting Liu
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

pdf bib
Learning Semantic Representations of Users and Products for Document Level Sentiment Classification
Duyu Tang | Bing Qin | Ting Liu
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf bib
Coooolll: A Deep Learning System for Twitter Sentiment Classification
Duyu Tang | Furu Wei | Bing Qin | Ting Liu | Ming Zhou
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)

pdf bib
A Joint Segmentation and Classification Framework for Sentiment Analysis
Duyu Tang | Furu Wei | Bing Qin | Li Dong | Ting Liu | Ming Zhou
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf bib
Learning Semantic Hierarchies via Word Embeddings
Ruiji Fu | Jiang Guo | Bing Qin | Wanxiang Che | Haifeng Wang | Ting Liu
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification
Duyu Tang | Furu Wei | Nan Yang | Ming Zhou | Ting Liu | Bing Qin
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Building Large-Scale Twitter-Specific Sentiment Lexicon : A Representation Learning Approach
Duyu Tang | Furu Wei | Bing Qin | Ming Zhou | Ting Liu
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
Triple based Background Knowledge Ranking for Document Enrichment
Muyu Zhang | Bing Qin | Ting Liu | Mao Zheng
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
Sentence Compression for Target-Polarity Word Collocation Extraction
Yanyan Zhao | Wanxiang Che | Honglei Guo | Bing Qin | Zhong Su | Ting Liu
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2013

pdf bib
Improving Web Search Ranking by Incorporating Structured Annotation of Queries
Xiao Ding | Zhicheng Dou | Bing Qin | Ting Liu | Ji-Rong Wen
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Microblog Entity Linking by Leveraging Extra Posts
Yuhang Guo | Bing Qin | Ting Liu | Sheng Li
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Exploiting Multiple Sources for Open-Domain Hypernym Discovery
Ruiji Fu | Bing Qin | Ting Liu
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Building Chinese Event Type Paradigm Based on Trigger Clustering
Xiao Ding | Bing Qin | Ting Liu
Proceedings of the Sixth International Joint Conference on Natural Language Processing

pdf bib
Topical Key Concept Extraction from Folksonomy
Han Xue | Bing Qin | Ting Liu | Chao Xiang
Proceedings of the Sixth International Joint Conference on Natural Language Processing

2012

pdf bib
Collocation Polarity Disambiguation Using Web-based Pseudo Contexts
Yanyan Zhao | Bing Qin | Ting Liu
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

2011

pdf bib
Coreference Resolution System using Maximum Entropy Classifier
Weipeng Chen | Muyu Zhang | Bing Qin
Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task

pdf bib
Generating Chinese Named Entity Data from a Parallel Corpus
Ruiji Fu | Bing Qin | Ting Liu
Proceedings of 5th International Joint Conference on Natural Language Processing

2010

pdf bib
Generalizing Syntactic Structures for Product Attribute Candidate Extraction
Yanyan Zhao | Bing Qin | Shen Hu | Ting Liu
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics

2009

pdf bib
Multilingual Dependency-based Syntactic and Semantic Parsing
Wanxiang Che | Zhenghua Li | Yongqiang Li | Yuhang Guo | Bing Qin | Ting Liu
Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL 2009): Shared Task

2008

pdf bib
A Cascaded Syntactic and Semantic Dependency Parsing System
Wanxiang Che | Zhenghua Li | Yuxuan Hu | Yongqiang Li | Bing Qin | Ting Liu | Sheng Li
CoNLL 2008: Proceedings of the Twelfth Conference on Computational Natural Language Learning

Search
Co-authors