Bingqing Wang


pdf bib
Modeling Endorsement for Multi-Document Abstractive Summarization
Logan Lebanoff | Bingqing Wang | Zhe Feng | Fei Liu
Proceedings of the Third Workshop on New Frontiers in Summarization

A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s). While such content may appear at the beginning of a single document, essential information is frequently reiterated in a set of documents related to a particular topic, resulting in an endorsement effect that increases information salience. In this paper, we model the cross-document endorsement effect and its utilization in multiple document summarization. Our method generates a synopsis from each document, which serves as an endorser to identify salient content from other documents. Strongly endorsed text segments are used to enrich a neural encoder-decoder model to consolidate them into an abstractive summary. The method has a great potential to learn from fewer examples to identify salient content, which alleviates the need for costly retraining when the set of documents is dynamically adjusted. Through extensive experiments on benchmark multi-document summarization datasets, we demonstrate the effectiveness of our proposed method over strong published baselines. Finally, we shed light on future research directions and discuss broader challenges of this task using a case study.

pdf bib
A New Approach to Overgenerating and Scoring Abstractive Summaries
Kaiqiang Song | Bingqing Wang | Zhe Feng | Fei Liu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a new approach to generate multiple variants of the target summary with diverse content and varying lengths, then score and select admissible ones according to users’ needs. Abstractive summarizers trained on single reference summaries may struggle to produce outputs that achieve multiple desirable properties, i.e., capturing the most important information, being faithful to the original, grammatical and fluent. In this paper, we propose a two-staged strategy to generate a diverse set of candidate summaries from the source text in stage one, then score and select admissible ones in stage two. Importantly, our generator gives a precise control over the length of the summary, which is especially well-suited when space is limited. Our selectors are designed to predict the optimal summary length and put special emphasis on faithfulness to the original text. Both stages can be effectively trained, optimized and evaluated. Our experiments on benchmark summarization datasets suggest that this paradigm can achieve state-of-the-art performance.


pdf bib
Insertion, Deletion, or Substitution? Normalizing Text Messages without Pre-categorization nor Supervision
Fei Liu | Fuliang Weng | Bingqing Wang | Yang Liu
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies


pdf bib
Contextual Recommendation based on Text Mining
Yize Li | Jiazhong Nie | Yi Zhang | Bingqing Wang | Baoshi Yan | Fuliang Weng
Coling 2010: Posters