Many studies have shown that transformers are able to predict subject-verb agreement, demonstrating their ability to uncover an abstract representation of the sentence in an unsupervised way. Recently, Li et al. (2021) found that transformers were also able to predict the object-past participle agreement in French, the modeling of which in formal grammar is fundamentally different from that of subject-verb agreement and relies on a movement and an anaphora resolution. To better understand transformers’ internal working, we propose to contrast how they handle these two kinds of agreement. Using probing and counterfactual analysis methods, our experiments on French agreements show that (i) the agreement task suffers from several confounders that partially question the conclusions drawn so far and (ii) transformers handle subject-verb and object-past participle agreements in a way that is consistent with their modeling in theoretical linguistics.
The goal of compositional generalization benchmarks is to evaluate how well models generalize to new complex linguistic expressions. Existing benchmarks often focus on lexical generalization, the interpretation of novel lexical items in syntactic structures familiar from training; structural generalization tasks, where a model needs to interpret syntactic structures that are themselves unfamiliar from training, are often underrepresented, resulting in overly optimistic perceptions of how well models can generalize. We introduce SLOG, a semantic parsing dataset that extends COGS (Kim and Linzen, 2020) with 17 structural generalization cases. In our experiments, the generalization accuracy of Transformer models, including pretrained ones, only reaches 40.6%, while a structure-aware parser only achieves 70.8%. These results are far from the near-perfect accuracy existing models achieve on COGS, demonstrating the role of SLOG in foregrounding the large discrepancy between models’ lexical and structural generalization capacities.
Ce travail aborde la question de la localisation de l’information syntaxique qui est encodée dans les représentations de transformers. En considérant la tâche d’accord objet-participe passé en français, les résultats de nos sondes linguistiques montrent que les informations nécessaires pour accomplir la tâche sont encodées d’une manière locale dans les représentations de mots entre l’antécédent du pronom relatif objet et le participe passé cible. En plus, notre analyse causale montre que le modèle s’appuie essentiellement sur les éléments linguistiquement motivés (i.e. antécédent et pronom relatif) pour prédire le nombre du participe passé.
This work addresses the question of the localization of syntactic information encoded in the transformers representations. We tackle this question from two perspectives, considering the object-past participle agreement in French, by identifying, first, in which part of the sentence and, second, in which part of the representation the syntactic information is encoded. The results of our experiments, using probing, causal analysis and feature selection method, show that syntactic information is encoded locally in a way consistent with the French grammar.
Many recent works have demonstrated that unsupervised sentence representations of neural networks encode syntactic information by observing that neural language models are able to predict the agreement between a verb and its subject. We take a critical look at this line of research by showing that it is possible to achieve high accuracy on this agreement task with simple surface heuristics, indicating a possible flaw in our assessment of neural networks’ syntactic ability. Our fine-grained analyses of results on the long-range French object-verb agreement show that contrary to LSTMs, Transformers are able to capture a non-trivial amount of grammatical structure.
We evaluate the ability of Bert embeddings to represent tense information, taking French and Chinese as a case study. In French, the tense information is expressed by verb morphology and can be captured by simple surface information. On the contrary, tense interpretation in Chinese is driven by abstract, lexical, syntactic and even pragmatic information. We show that while French tenses can easily be predicted from sentence representations, results drop sharply for Chinese, which suggests that Bert is more likely to memorize shallow patterns from the training data rather than uncover abstract properties.