Binxing Jiao


pdf bib
THE-X: Privacy-Preserving Transformer Inference with Homomorphic Encryption
Tianyu Chen | Hangbo Bao | Shaohan Huang | Li Dong | Binxing Jiao | Daxin Jiang | Haoyi Zhou | Jianxin Li | Furu Wei
Findings of the Association for Computational Linguistics: ACL 2022

As more and more pre-trained language models adopt on-cloud deployment, the privacy issues grow quickly, mainly for the exposure of plain-text user data (e.g., search history, medical record, bank account). Privacy-preserving inference of transformer models is on the demand of cloud service users. To protect privacy, it is an attractive choice to compute only with ciphertext in homomorphic encryption (HE). However, enabling pre-trained models inference on ciphertext data is difficult due to the complex computations in transformer blocks, which are not supported by current HE tools yet. In this work, we introduce THE-X, an approximation approach for transformers, which enables privacy-preserving inference of pre-trained models developed by popular frameworks. THE-X proposes a workflow to deal with complex computation in transformer networks, including all the non-polynomial functions like GELU, softmax, and LayerNorm. Experiments reveal our proposed THE-X can enable transformer inference on encrypted data for different downstream tasks, all with negligible performance drop but enjoying the theory-guaranteed privacy-preserving advantage.

pdf bib
Effective and Efficient Query-aware Snippet Extraction for Web Search
Jingwei Yi | Fangzhao Wu | Chuhan Wu | Xiaolong Huang | Binxing Jiao | Guangzhong Sun | Xing Xie
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Query-aware webpage snippet extraction is widely used in search engines to help users better understand the content of the returned webpages before clicking. The extracted snippet is expected to summarize the webpage in the context of the input query. Existing snippet extraction methods mainly rely on handcrafted features of overlapping words, which cannot capture deep semantic relationships between the query and webpages. Another idea is to extract the sentences which are most relevant to queries as snippets with existing text matching methods. However, these methods ignore the contextual information of webpages, which may be sub-optimal. In this paper, we propose an effective query-aware webpage snippet extraction method named DeepQSE. In DeepQSE, the concatenation of title, query and each candidate sentence serves as an input of query-aware sentence encoder, aiming to capture the fine-grained relevance between the query and sentences. Then, these query-aware sentence representations are modeled jointly through a document-aware relevance encoder to capture contextual information of the webpage. Since the query and each sentence are jointly modeled in DeepQSE, its online inference may be slow. Thus, we further propose an efficient version of DeepQSE, named Efficient-DeepQSE, which can significantly improve the inference speed of DeepQSE without affecting its performance. The core idea of Efficient-DeepQSE is to decompose the query-aware snippet extraction task into two stages, i.e., a coarse-grained candidate sentence selection stage where sentence representations can be cached, and a fine-grained relevance modeling stage. Experiments on two datasets validate the effectiveness and efficiency of our methods.


pdf bib
xMoCo: Cross Momentum Contrastive Learning for Open-Domain Question Answering
Nan Yang | Furu Wei | Binxing Jiao | Daxing Jiang | Linjun Yang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Dense passage retrieval has been shown to be an effective approach for information retrieval tasks such as open domain question answering. Under this paradigm, a dual-encoder model is learned to encode questions and passages separately into vector representations, and all the passage vectors are then pre-computed and indexed, which can be efficiently retrieved by vector space search during inference time. In this paper, we propose a new contrastive learning method called Cross Momentum Contrastive learning (xMoCo), for learning a dual-encoder model for question-passage matching. Our method efficiently maintains a large pool of negative samples like the original MoCo, and by jointly optimizing question-to-passage and passage-to-question matching tasks, enables using separate encoders for questions and passages. We evaluate our method on various open-domain question answering dataset, and the experimental results show the effectiveness of the proposed method.