Bismarck Odoom


2024

pdf bib
Kreyòl-MT: Building MT for Latin American, Caribbean and Colonial African Creole Languages
Nathaniel Robinson | Raj Dabre | Ammon Shurtz | Rasul Dent | Onenamiyi Onesi | Claire Monroc | Loïc Grobol | Hasan Muhammad | Ashi Garg | Naome Etori | Vijay Murari Tiyyala | Olanrewaju Samuel | Matthew Stutzman | Bismarck Odoom | Sanjeev Khudanpur | Stephen Richardson | Kenton Murray
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

A majority of language technologies are tailored for a small number of high-resource languages, while relatively many low-resource languages are neglected. One such group, Creole languages, have long been marginalized in academic study, though their speakers could benefit from machine translation (MT). These languages are predominantly used in much of Latin America, Africa and the Caribbean. We present the largest cumulative dataset to date for Creole language MT, including 14.5M unique Creole sentences with parallel translations—11.6M of which we release publicly, and the largest bitexts gathered to date for 41 languages—the first ever for 21. In addition, we provide MT models supporting all 41 Creole languages in 172 translation directions. Given our diverse dataset, we produce a model for Creole language MT exposed to more genre diversity then ever before, which outperforms a genre-specific Creole MT model on its own benchmark for 23 of 34 translation directions.

pdf bib
Where are you from? Geolocating Speech and Applications to Language Identification
Patrick Foley | Matthew Wiesner | Bismarck Odoom | Leibny Paola Garcia Perera | Kenton Murray | Philipp Koehn
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We train models to answer the question, Where are you from? and show how such models can be repurposed for language identification (LID). To our knowledge, this paper is the first to introduce data sources, methods and models to tackle the task of geolocation of speech at a global scale, and the first to explore using geolocation as a proxy-task for LID. Specifically, we explore whether radio broadcasts with known origin can be used to train regression and classification-based models for geolocating speech. We build models on top of self-supervised pretrained models, using attention pooling to qualitatively verify that the model geolocates the speech itself, and not other channel artifacts.The best geolocation models localize speaker origin to around 650km. We confirm the value of speech geolocation as a proxy task by using speech geolocation models for zero-shot LID. Finally, we show that fine-tuning geolocation models for LID outperforms fine-tuning pretrained Wav2Vec2.0 models, and achieves state-of-the-art performance on the FLEURS benchmark.