Bo Ai
2024
LLM-Based Multi-Hop Question Answering with Knowledge Graph Integration in Evolving Environments
Ruirui Chen
|
Weifeng Jiang
|
Chengwei Qin
|
Ishaan Singh Rawal
|
Cheston Tan
|
Dongkyu Choi
|
Bo Xiong
|
Bo Ai
Findings of the Association for Computational Linguistics: EMNLP 2024
The important challenge of keeping knowledge in Large Language Models (LLMs) up-to-date has led to the development of various methods for incorporating new facts. However, existing methods for such knowledge editing still face difficulties with multi-hop questions that require accurate fact identification and sequential logical reasoning, particularly among numerous fact updates. To tackle these challenges, this paper introduces Graph Memory-based Editing for Large Language Models (GMeLLo), a straightforward and effective method that merges the explicit knowledge representation of Knowledge Graphs (KGs) with the linguistic flexibility of LLMs. Beyond merely leveraging LLMs for question answering, GMeLLo employs these models to convert free-form language into structured queries and fact triples, facilitating seamless interaction with KGs for rapid updates and precise multi-hop reasoning. Our results show that GMeLLo significantly surpasses current state-of-the-art (SOTA) knowledge editing methods in the multi-hop question answering benchmark, MQuAKE, especially in scenarios with extensive knowledge edits.
2022
Whodunit? Learning to Contrast for Authorship Attribution
Bo Ai
|
Yuchen Wang
|
Yugin Tan
|
Samson Tan
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Authorship attribution is the task of identifying the author of a given text. The key is finding representations that can differentiate between authors. Existing approaches typically use manually designed features that capture a dataset’s content and style, but these approaches are dataset-dependent and yield inconsistent performance across corpora. In this work, we propose to learn author-specific representations by fine-tuning pre-trained generic language representations with a contrastive objective (Contra-X). We show that Contra-X learns representations that form highly separable clusters for different authors. It advances the state-of-the-art on multiple human and machine authorship attribution benchmarks, enabling improvements of up to 6.8% over cross-entropy fine-tuning. However, we find that Contra-X improves overall accuracy at the cost of sacrificing performance for some authors. Resolving this tension will be an important direction for future work. To the best of our knowledge, we are the first to integrate contrastive learning with pre-trained language model fine-tuning for authorship attribution.
Search
Fix data
Co-authors
- Ruirui Chen 1
- Dongkyu Choi 1
- Weifeng Jiang 1
- Chengwei Qin 1
- Ishaan Singh Rawal 1
- show all...