Bo Fu


pdf bib
Knowdee at BLP-2023 Task 2: Improving Bangla Sentiment Analysis Using Ensembled Models with Pseudo-Labeling
Xiaoyi Liu | Mao Teng | SHuangtao Yang | Bo Fu
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)

This paper outlines our submission to the Sentiment Analysis Shared Task at the Bangla Language Processing (BLP) Workshop at EMNLP2023 (Hasan et al., 2023a). The objective of this task is to detect sentiment in each text by classifying it as Positive, Negative, or Neutral. This shared task is based on the MUltiplatform BAngla SEntiment (MUBASE) (Hasan et al., 2023b) and SentNob (Islam et al., 2021) dataset, which consists of public comments from various social media platforms. Our proposed method for this task is based on the pre-trained Bangla language model BanglaBERT (Bhattacharjee et al., 2022). We trained an ensemble of BanglaBERT on the original dataset and used it to generate pseudo-labels for data augmentation. This expanded dataset was then used to train our final models. During the evaluation phase, 30 teams submitted their systems, and our system achieved the second highest performance with F1 score of 0.7267. The source code of the proposed approach is available at


pdf bib
Integrating Topic Modeling with Word Embeddings by Mixtures of vMFs
Ximing Li | Jinjin Chi | Changchun Li | Jihong Ouyang | Bo Fu
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Gaussian LDA integrates topic modeling with word embeddings by replacing discrete topic distribution over word types with multivariate Gaussian distribution on the embedding space. This can take semantic information of words into account. However, the Euclidean similarity used in Gaussian topics is not an optimal semantic measure for word embeddings. Acknowledgedly, the cosine similarity better describes the semantic relatedness between word embeddings. To employ the cosine measure and capture complex topic structure, we use von Mises-Fisher (vMF) mixture models to represent topics, and then develop a novel mix-vMF topic model (MvTM). Using public pre-trained word embeddings, we evaluate MvTM on three real-world data sets. Experimental results show that our model can discover more coherent topics than the state-of-the-art baseline models, and achieve competitive classification performance.